
Methods of Counting
6.1-6.6



The Pigeonhole Principle

Definition: Pigeonhole Principle

If  items are placed in  boxes, at least one box 
contains at least  items

n k
⌈ n

k ⌉
Definition: Pigeonhole Principle (w/functions)

Let  and .  

There are at least  values such that 

f : X → Y, |X | = n, |Y | = k, m = ⌈n
k ⌉

m
f(a1) = f(a2) = … = f(am)

Example: A 3-box Pigeon coop and 4 pigeons 



The Pigeonhole Principle
Example: 

The last week of the semester has just 3 days of class 
meetings but you have 7 assignments due that week.  By 

the pigeonhole principle, at least on day has at least  = 

3 assignments due. 


How many contacts must be in your cell phone to ensure 
that 2 last names begin with the same pair of letters?


⌈ 7
3 ⌉

Answer: 262 + 1 = 676 + 1 = 677



The Multiplication Principle
Example: 

How many possible 3-digit octal numbers are there?


Answer: 8 8 8 ⇒ 8 ⋅ 8 ⋅ 8 = 83 = 233 = 29 = 512

Definition: Multiplication Principle (a.k.a. Product Rule)


If there are  steps in an activity, with  ways to 
accomplish step , then there are  
ways to complete all  steps.

s nx
x n1 ⋅ n2 ⋅ … ⋅ ns

s

For the Octal example,  and s = 3 n1 = n2 = n3 = 8



The Multiplication Principle
Example: 

Party choices: 3 to choose from on Thrusday, 6 on Friay, 5 on 
Saturday, and 2 on Sunday.  If you attend only one party per 
night, how many party schedules can be created?


Answer: By the M.P.  schedules 

Now consider three digital octal numbers without digit reuse. 
How many such values are there?


Answer: By the M.P.  

Note: .

3 ⋅ 6 ⋅ 5 ⋅ 2 = 180

8 ⋅ 7 ⋅ 6 = 336

|P1 × P2 × … × Ps | = |P1 | ⋅ |P2 | ⋅ … ⋅ |Ps |



The Addition Principle
Definition: Addition Principle (a.k.a. Product Rule)


If there are  tasks, with  ways to accomplish the 
 task, there are  ways to 

accomplish one of these tasks, assuming that the 
tasks are non-interfering.

t nx
xth n1 + n2 + … + nt

Example: 

You need to enroll in a literature class. 4 English Lit, 3 
Poetry, and 5 World Lit classes fit your schedule. 


By the A.P, there are  possible ways for you 
to enroll in a Lit class.

4 + 3 + 5 = 12



The Addition Principle
Example: 

Grade Sheet Identifiers 4-8 printable ASCII characters


How many IDs of 4 letters are there?


How many ID’s of 5 letters are there?


But you can choose one of any of the 5 legal lengths. 


By the A.P., there are


          


(6.7 quadrillion!) possible grade sheet identifiers

8

∑
i=4

95i = 6,704,780,953,650,625



The Principle of Inclusion-Exclusion

• A problem with the Addition Principle:

• “Non-interfering” - no overlapping of tasks may occur!

Example: 
I need a quiz question. I have four questions about matrices 
and three about relations.  But if one is about matrix 
representation of relations, it is a member of both groups. 


 The Addition Principle does not apply!⇒
(It reports  but there are only 6 
questions - the intersecting question is 
being counted twice.)

4 + 3 = 7,
Matrix Relation



The Principle of Inclusion-Exclusion
Definition: Principle of Inclusion-Exclusion for Two Sets


The cardinality of the union of sets  and  is the 
sum of their individual cardinalities, excluding the 
cardinality of their intersection

That is: 

M N

|M ∪ N | = |M | + |N | = |M ∩ N |

|Matrix ∪ Relation | = |Matrix | + |Relation | − |Matrix ∩ Relation |

= 4 + 3 − 1

= 6



The Principle of Inclusion-Exclusion

The cardinality of the union of sets , , and  is the 
sum of their individual cardinalities, excluding the sum 
of the cardinalities of their pairwise intersections but 
including the cardinality of their intersection

M N O
Definition: Principle of Inclusion-Exclusion for Three Sets

That is: 

             

              

|M ∪ N ∪ O | = |M | + |N | + |O |
− |M ∩ N | − |M ∩ O | − |N ∩ O |
+ |M ∩ N ∩ O |

And, of course, this can be extended beyond 3 sets.



• Why so complex? 

The Principle of Inclusion-Exclusion

|A | + |B | + |C | − |A ∩ B | − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |

1

1
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Example: 
Let , , , , 

,  and .


What is ?


 items

|A | = 6 |B | = 5 |C | = 7 |A ∩ B | = 2
|A ∩ C | = 3 |B ∩ C | = 2 |A ∩ B ∩ C | = 1

|A ∪ B ∪ C |

|A ∪ B ∪ C | = 6 + 5 + 7 − (2 + 3 + 2) + 1 = 12

The Principle of Inclusion-Exclusion

Hint: Fill the Venn diagram from 
the center and work outward.

A

B

C

1 11

2 32

2



Permutations

An ordering of  distinct elements.n ≥ 0
Definition: Permutation

Example: 
Consider a golf tournament with a 5-way playoff between 
players A, B, C, D, and E.  To determine the order of play 
they draw #s from a hat.


This generates a permutation of the players … 

… but how many possible permutations are there?



Permutations
Conjecture: There are  possible permutations of  elementsn! n

Proof (direct):


There are  ways to select the 1st element.


 ways to select the 2nd, etc.


By the multiplication principle, the number of possible 
orderings is  


Therefore, there are  possible permutations of  
elements.

n

n − 1

n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ 2 ⋅ 1 = n!

n! n



-Permutationsr

Conjecture: The number of - permutations of  elements 
denoted  is 

r n
P(n, r), n ⋅ (n − 1) ⋅ … ⋅ (n − r + 1), r ≤ n

Proof Outline:


     1st     2nd                     r-th 

      


                            

n ⋅ (n − 1) ⋅ … ⋅ (n − (r − 1))

… ⋅ (n − r + 1)

An ordering of an -element subset of  distinct 
elements is called an -permutation. 

r n
r

Definition: -Permutationr P(n, r)



-Permutationsr
Observation: 

 n ⋅ (n − 1) ⋅ … ⋅ (n − r + 1) ⋅ (n − r) ⋅ … ⋅ 2 ⋅ 1 = n!

P(n, r) =
n!

(n − r)!

Example: 
How many 3-permutations can be formed from 5 
elements?


 and 


Or: 

n − r + 1 = 5 − 3 + 1 = 3 5 * 4 * 3 = 60

P(5,3) =
n!

n − r
! =

5!
2!

=
5 * 4 * 3 * 2 * 1

2 * 1
= 60



-Permutationsr
Example: 
16 countries are competing for medals (gold, silver, and 
bronze) in Team Discrete math at the Olympics. In how 
many was can medals be awarded? 

Answer: P(16,3) =
16!
13!

= 16 ⋅ 15 ⋅ 14 = 3360



- Combinationr
An -Combination of an -element set  is an -element 
subset of . The quantity of - element subsets is 
denoted  or , and is read “  choose 

r n X r
X r

C(n, r) (n
r) n r

Definition: -Combinationr

Other Notations:       nCr Cr,n

Example: 
In how many ways my 2-element subsets be chosen from ?


Answer: Order does not matter in sets, so 


The sets: , and . 

Note that .

{A, B, C}

(3
2) = 3

{A, B}, {A, C} {B, C}
P(3,2) = 6



- Combinationr
When order matters, the # of choices grows

     Example:  vs.  and .

But … grows by how much? There are  possible 
arrangements, so:


 , or 

{A, B} (A, B) (B, A)
r!

P(n, r) = (n
r) ⋅ r! (n

r) =
P(n, r)

r!
=

n!
r!(n − r)!

The -Permutation - -Combination Connection:r r

Example: 




Or: 


(5
3) =

P(5,3)
3!

=
60
6

= 10

5!
3!(5 − 3)!

=
5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
3 ⋅ 2 ⋅ 1 ⋅ 2 ⋅ 1

= 10



- Combinationr
Example: 
From a Chess Club of 12 members, how many ‘traveling squads’ of 6 can be 
formed?


Answer: Order doesn't matter, so:  

The University is forming a committee with 5 (of 9 available) faculty and (of 8) 
staff members.  In how many ways can the committee be formed?


Answer: By combinations and the Multiplication Principle: 

(12
6 ) = 924

(9
5) ⋅ (8

4) = 126 ⋅ 70 = 8820



Repetition and Permutations

• We’ve already seen this!

Example: 
Recall: 3 digit octal numbers:

      With repetition: 


 Without repetition: 

8 ⋅ 8 ⋅ 8
8 ⋅ 7 ⋅ 6

• In General: When object repetition is permitted, the 
number of -permutations of a set on  objects is  r n nr

- but  we haven’t been allowing 
repetition recently

Here: 83



Repetition and Combinations
Example: ‘Experienced’ Golf Balls 
In how many ways can a 

golfer select two balls


     Answer: 6 (RR,GG,BB,RG,RB,GB) 
Imagine a ball tray - only the balls and dividers matter!


                     


We have 4 positions for 2 balls ( ) and 2 remaining positives 
for dividers ( ). By M.P.: 

200 ! · · || 110 ! ·| · |
020 ! | · · 101 ! ·||·
002 ! || · · 011 ! | · |·

(4
2)

(2
2) (4

2)(2
2) = 6

Red Green Blue

Pips & Pipes



Repetition and Combinations
Example:  At a cafeteria, how many ways exist to select 4 
utensils from bins of forks, spoons, knives, & soup 
spoons? 

     Answer:  4 bins  3 dividers, and 

                    3 dividers + 4 utensils = 7 items


                    

⇒

∴ (7
4) = (7

3) =
7!

4!3!
= 35

• In General: When repetition is allowed, the number of -combinations 
of a set on  objects is


   here  utensils and  bins 

r
n

(n + r − 1
r ) = (n + r − 1

n − 1 ) r = 4 n = 4



Repetition and Combinations

Example:  Consider a pot-luck with 5 platters of food.A child 
must have one serving from each platter but may have 3 more 
servings of anything. In how many ways can the child form 8 
total servings?

 

Answer: Ignore the first 5 servings, there’s just one way to select 
them.  Then: 5 platters 4 dividers, plus 3 servings = 7 items. 


So, 

⇒

(7
3) = 35

• In General: When repetition is allowed, the number of -combinations 
of a set on  elements when one of each is included in  is


   here  servings and  platters 

r
n r

(r − 1
r − n) = (r − 1

n − 1) r = 8 n = 5

• A Small Extension:



Another View of Repetition and 
Combinations

• Consider: An integer variable can represent the quantity 
of items selected with repetition

Example: The Golf Ball Problem (again!)

Let  be the numbers of red, blue, and green balls the 
customer selects. Clearly .


We need solutions of  where  are .

Or we need 2 pips (the sum) and 2 pipes (the plus signs). 


Again,  ways to buy 2 golf balls of the 3 colors

r, b, g
r, b, g ∈ ℤ

r + b + g = 2 r, b, g ≥ 0

(4
2) = 6



Another View of Repetition and 
Combinations

Example: The Pot-luck Dinner Problem (again!)

Here, our equation is  where 

.  (  b/c we need serving each.)


Pips and pipes needs each term to be  To achieve 
this, let . This transforms the equation to: 


 where 

Or we need 3 pips (the sum) and 4 pipes (the plus signs). 


As before,  ways to get 3 servings.


x1 + x2 + x3 + x4 + x5 = 8
xi ≥ 1 ≥ 1 ≥ 1

≥ 0
yi = xi − 1
y1 + y2 + y3 + y4 + y5 = 3 yi ≥ 0

(7
3) = (7

4) = 35



Generalized Permutations
• Idea: What if some elements are indistinguishable?

Example: 
Review: How many arrangements of the letters A-F are possible? 


     Answer:    


   How many arrangements of A, A, and B are possible?

Answer: 3: AAB, ABA, BAA because the A’s are indistinguishable. 
Otherwise, it’s a simple permutation: . The difference: There 
are  ways to order the A's in each of the three arrangements, 

but here those orderings don't matter. Thus, 

6! = 720 = P(6,6)

3! = 6
2! = 2

3!
2!

= 3



Generalized Permutations
• What if we have indistinguishable copies of multiple elements?

Example: 
How many distinguishable arrangements of the letters in the word 
TATTOO are possible? 


     Answer: . There are 6! letter arrangements possible, but  


     3! arrangements of the T's and the  arrangements of the O’s don't 

     matter. 

In general: If we have n objects of t different types, and there are  
indistinguishable objects of type k, then the number of distinct 

arrangements is 

6!
3!2!

= 60

2!

ik

P(n; i1, i2, . . . , it) =
n!

i1!i2! . . . it!



Generalized Permutations
• We can view  in terms of combinationsP(n; i1, i2, . . . , it)

Example: Consider TATTOO again  

There are  ways to place the T’s, leaving 3 empty spaces. There are 

 ways to place the O's and  way to place the A. By the 

multiplication Principle: .


In General:


(6
3) = 20

(3
2) = 3 (1

1) = 1

(6
3)(3

1)(1
1) = 20 ⋅ 3 ⋅ 1 = 60

P(n; i1, i2, . . . , it) = (n
i1)(n − i1

i2 )(n − i1 − i2
i3 ) . . . (n − . . . − it−1

it )



More Fun With Combinations

• What if we created a table of  values?(n
k)

0 1 2 3 4 5
0 1 - - - - -
1 1 1 - - - -
2 1 2 1 - - -
3 1 3 3 1 - -
4 1 4 6 4 1 -
5 1 5 10 10 5 1

k

n

This should look 
familiar… 



Observations: 


1. Each row is palindromic: 


2. “Pascal’s Identity” (Inverted Triangles): 

(n
k) = ( n

n − k)
(n

k) = (n − 1
k ) + (n − 1

k − 1)

Pascal’s Triangle
… is just the centered rows of the  table:(n

k)
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
...

(n − 1
k − 1)

(n
k)

(n − 1
k )

0 1 2 3 4 5
0 1 - - - - -
1 1 1 - - - -
2 1 2 1 - - -
3 1 3 3 1 - -
4 1 4 6 4 1 -
5 1 5 10 10 5 1



More Fun With Combinations

Proof (direct, algebraic):


Conjecture: , where (n
k) = ( n

n − k) 0 ≤ k ≤ n

� n
n�k

�
= n!

(n�k)!(n�(n�k))!

= n!
(n�k)!k!

=
�n
k

�

Therefore,  (n
k) = ( n

n − k), 0 ≤ k ≤ n

[By definition]

[Simplified]

[By definition]



Pascal’s Identity (Combinatorial 
Argument Example)

Consider . .  Let .


There are  subsets of  of size 2:





Consider element . Either a subset contains  or it does not.


 If  is included, to compete the subset we need one more item from the 
remaining three. There are such subsets.


If  is not included, to compete the subset we need two more items to make the 
subset, but again we have just three items to choose from: 


Thus the number of subsets is      

S = {W, X, Y, Z} |S | = 4 = n + 1 k = 2

(n + 1
k ) = (4

2) = 6 S

{{W, X}, {W, Y}, {W, Z}, {X, Y}, {X, Z}, {Y, Z}}

W W

W

(3
1)

W

(3
2)

(4
2) = (3

1) + (3
2) (6 = 3 + 3)

Conjecture: , where (n + 1
k ) = ( n

k − 1) + (n
k) 1 ≤ k ≤ n



Pascal’s Identity (Combinatorial Proof)

Proof (direct, combinatorial (“double counting”)):


Let , and . Because sets are 
unordered, there are  subsets of  of size . 


Some of these subsets include , and the rest do not. 


(Continued….)

d ∈ D |D | = n + 1

(n + 1
k ) D k

d

Conjecture: , where (n + 1
k ) = ( n

k − 1) + (n
k) 1 ≤ k ≤ n

An argument based on the principles of counting
Definition: Combinatorial Proof



Pascal’s Identity (Combinatorial Proof)

Case 1: Subsets that include .  Differences are due to the 
other  elements.  We need to select those elements from 
the remaining (that is, non- ) values of . 


There are  ways to do this.


Case 2: Subsets not including . We need to select  more 
elements from , again not counting .  There are  ways to 

do this. 


Together this is the total quantity of subsets.


Therefore,  where 

d
k − 1

d D

( n
k − 1)

d k
D d (n

k)

(n + 1
k ) = ( n

k − 1) + (n
k) 1 ≤ k ≤ n



The Binomial Theorem
The values of Pascal's triangle appear in numerous places.


For instance:





Generalize this, and you’ve got the Binomial Theorem.

(a+ b)0 = 1
(a+ b)1 = 1a + 1b
(a+ b)2 = 1a2 + 2ab + 1b2

(a+ b)3 = 1a3 + 3a2b + 3ab2 + 1b3



The Binomial Theorem
Theorem: (a + b)n =

n

∑
k=0

[(n
k) ⋅ an−k ⋅ bk]

Proof: See Rosen Sect 6.4 p 437-8. (Combinatorial!)

Example:  Find the coefficient of  in the expansion of 
. 

    By the above theorem: , and so the 


    coefficient is 


x5y3

(x + y)8

k = 3, n = 8

(8
3) = 56


