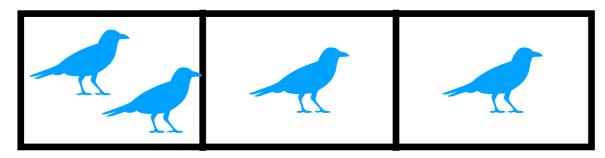
Methods of Counting

6.1-6.6

The Pigeonhole Principle

Example: A 3-box Pigeon coop and 4 pigeons



Definition: Pigeonhole Principle

If n items are placed in k boxes, at least one box

contains at least
$$\lceil \frac{n}{k} \rceil$$
 items

Definition: Pigeonhole Principle (w/functions)

Let
$$f: X \to Y$$
, $|X| = n$, $|Y| = k$, and $m = \lceil \frac{n}{k} \rceil$.

There are at least *m* values such that

$$f(a_1) = f(a_2) = \dots = f(a_m)$$

The Pigeonhole Principle

Example:

The last week of the semester has just 3 days of class meetings but you have 7 assignments due that week. By the pigeonhole principle, at least on day has at least $\left\lceil \frac{7}{3} \right\rceil = 3$ assignments due.

How many contacts must be in your cell phone to ensure that 2 last names begin with the same pair of letters?

Answer: $26^2 + 1 = 676 + 1 = 677$

The Multiplication Principle

Example:

How many possible 3-digit octal numbers are there?

Answer:
$$888 \Rightarrow 8 \cdot 8 \cdot 8 = 8^3 = 2^{3^3} = 2^9 = 512$$

Definition: Multiplication Principle (a.k.a. Product Rule)

If there are s steps in an activity, with n_x ways to accomplish step x, then there are $n_1 \cdot n_2 \cdot \ldots \cdot n_s$ ways to complete <u>all</u> s steps.

For the Octal example, s=3 and $n_1=n_2=n_3=8$

The Multiplication Principle

Example:

Party choices: 3 to choose from on Thrusday, 6 on Friay, 5 on Saturday, and 2 on Sunday. If you attend only one party per night, how many party schedules can be created?

Answer: By the M.P. $3 \cdot 6 \cdot 5 \cdot 2 = 180$ schedules

Now consider three digital octal numbers without digit reuse. How many such values are there?

Answer: By the M.P. $8 \cdot 7 \cdot 6 = 336$

Note: $|P_1 \times P_2 \times ... \times P_s| = |P_1| \cdot |P_2| \cdot ... \cdot |P_s|$.

The Addition Principle

Definition: Addition Principle (a.k.a. Product Rule)

If there are t tasks, with n_x ways to accomplish the x^{th} task, there are $n_1 + n_2 + \ldots + n_t$ ways to accomplish <u>one</u> of these tasks, assuming that the tasks are non-interfering.

Example:

You need to enroll in a literature class. 4 English Lit, 3 Poetry, and 5 World Lit classes fit your schedule.

By the A.P, there are 4 + 3 + 5 = 12 possible ways for you to enroll in a Lit class.

The Addition Principle

Example:

Grade Sheet Identifiers 4-8 printable ASCII characters

How many IDs of 4 letters are there?

How many ID's of 5 letters are there?

But you can choose one of any of the 5 legal lengths.

By the A.P., there are

$$\sum_{i=4}^{8} 95^{i} = 6,704,780,953,650,625$$

(6.7 quadrillion!) possible grade sheet identifiers

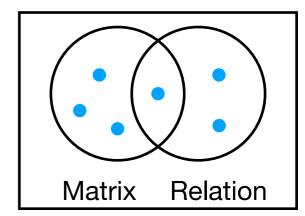
- A problem with the Addition Principle:
 - "Non-interfering" no overlapping of tasks may occur!

Example:

I need a quiz question. I have four questions about matrices and three about relations. But if one is about matrix representation of relations, it is a member of both groups.

⇒ The Addition Principle does not apply!

(It reports 4 + 3 = 7, but there are only 6 questions - the intersecting question is being counted twice.)



Definition: Principle of Inclusion-Exclusion for Two Sets

The cardinality of the union of sets M and N is the sum of their individual cardinalities, excluding the cardinality of their intersection

That is:
$$|M \cup N| = |M| + |N| = |M \cap N|$$

| Matrix
$$\cup$$
 Relation | = | Matrix | + | Relation | - | Matrix \cap Relation | = $4 + 3 - 1$ = 6

Definition: Principle of Inclusion-Exclusion for Three Sets

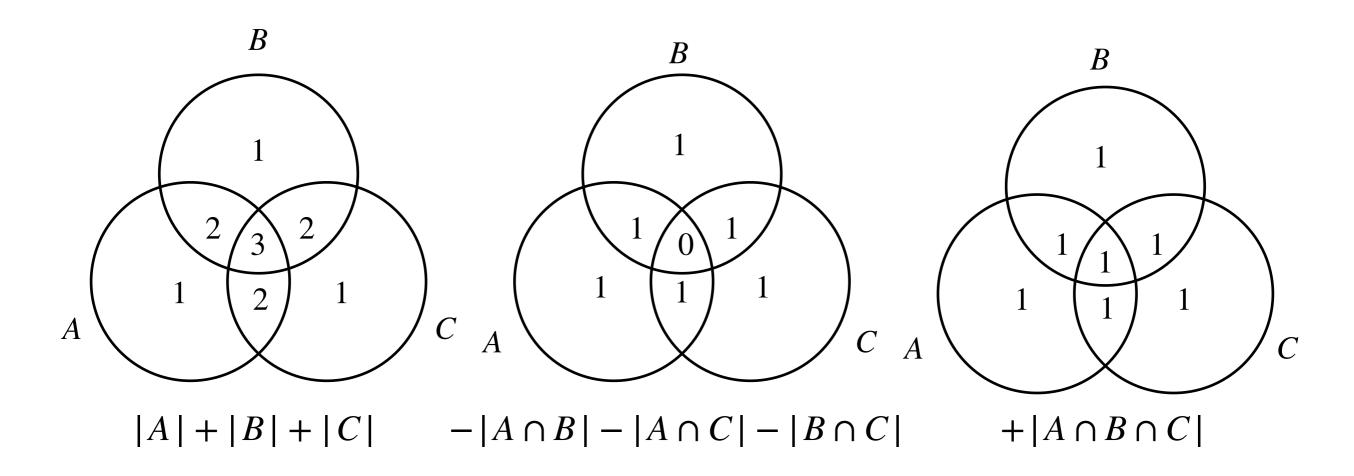
The cardinality of the union of sets M, N, and O is the sum of their individual cardinalities, <u>excluding</u> the sum of the cardinalities of their pairwise intersections but <u>including</u> the cardinality of their intersection

That is:
$$|M \cup N \cup O| = |M| + |N| + |O|$$

 $-|M \cap N| - |M \cap O| - |N \cap O|$
 $+|M \cap N \cap O|$

And, of course, this can be extended beyond 3 sets.

Why so complex?

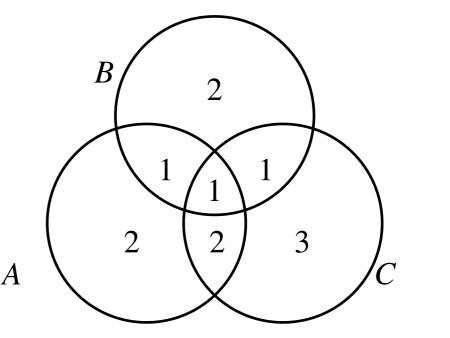


Example:

Let
$$|A| = 6$$
, $|B| = 5$, $|C| = 7$, $|A \cap B| = 2$, $|A \cap C| = 3$, $|B \cap C| = 2$ and $|A \cap B \cap C| = 1$. What is $|A \cup B \cup C|$?

$$|A \cup B \cup C| = 6 + 5 + 7 - (2 + 3 + 2) + 1 = 12$$
 items

Hint: Fill the Venn diagram from the center and work outward.



Permutations

Definition: Permutation

An ordering of $n \geq 0$ distinct elements.

Example:

Consider a golf tournament with a 5-way playoff between players A, B, C, D, and E. To determine the order of play they draw #s from a hat.

This generates a permutation of the players ...

... but how many possible permutations are there?

Permutations

Conjecture: There are n! possible permutations of n elements

Proof (direct):

There are *n* ways to select the 1st element.

n-1 ways to select the 2nd, etc.

By the multiplication principle, the number of possible orderings is $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = n!$

Therefore, there are n! possible permutations of n elements.

r-Permutations

Definition: \underline{r} -Permutation P(n, r)

An ordering of an r-element subset of n distinct elements is called an r-permutation.

Conjecture: The number of r- permutations of n elements denoted P(n, r), is $n \cdot (n - 1) \cdot \ldots \cdot (n - r + 1)$, $r \le n$

Proof Outline:

1st 2nd r-th

$$n \cdot (n-1) \cdot \ldots \cdot (n-(r-1))$$

$$\dots \cdot (n-r+1)$$

r-Permutations

Observation:

$$n \cdot (n-1) \cdot \ldots \cdot (n-r+1) \cdot \boxed{(n-r) \cdot \ldots \cdot 2 \cdot 1} = n!$$

$$P(n,r) = \frac{n!}{(n-r)!}$$

Example:

How many 3-permutations can be formed from 5 elements?

$$n - r + 1 = 5 - 3 + 1 = 3 \text{ and } 5 * 4 * 3 = 60$$

$$Or: P(5,3) = \frac{n!}{n-r}! = \frac{5!}{2!} = \frac{5*4*3*2*1}{2*1} = 60$$

r-Permutations

Example:

16 countries are competing for medals (gold, silver, and bronze) in Team Discrete math at the Olympics. In how many was can medals be awarded?

Answer:
$$P(16,3) = \frac{16!}{13!} = 16 \cdot 15 \cdot 14 = 3360$$

r-Combination

Definition: r-Combination

An r-Combination of an n-element set X is an r-element subset of X. The quantity of r- element subsets is denoted C(n,r) or $\binom{n}{r}$, and is read "n choose r

Other Notations: ${}_{n}C_{r}$ $C_{r,n}$

Example:

In how many ways my 2-element subsets be chosen from $\{A, B, C\}$?

Answer: Order does not matter in sets, so $\binom{3}{2} = 3$

The sets: $\{A, B\}, \{A, C\}$, and $\{B, C\}$.

Note that P(3,2) = 6.

r-Combination

The r-Permutation - r-Combination Connection:

When order matters, the # of choices grows

Example: $\{A, B\}$ vs. (A, B) and (B, A).

But ... grows by how much? There are r! possible arrangements, so:

$$P(n,r) = \binom{n}{r} \cdot r!, \text{ or } \binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Example:

$$\binom{5}{3} = \frac{P(5,3)}{3!} = \frac{60}{6} = 10$$

Or:
$$\frac{5!}{3!(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} = 10$$

r-Combination

Example:

From a Chess Club of 12 members, how many 'traveling squads' of 6 can be formed?

Answer: Order doesn't matter, so:
$$\binom{12}{6} = 924$$

The University is forming a committee with 5 (of 9 available) faculty and (of 8) staff members. In how many ways can the committee be formed?

Answer: By combinations and the Multiplication Principle:

$$\binom{9}{5} \cdot \binom{8}{4} = 126 \cdot 70 = 8820$$

Repetition and Permutations

- We've already seen this!
- but we haven't been allowing repetition recently

Example:

Recall: 3 digit octal numbers:

With repetition: $8 \cdot 8 \cdot 8$

Without repetition: 8 · 7 · 6

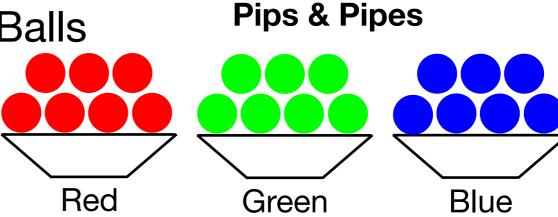
• In General: When object repetition is permitted, the number of r-permutations of a set on n objects is n^r

Here: 8^3

Repetition and Combinations

Example: 'Experienced' Golf Balls

In how many ways can a golfer select two balls



Answer: 6 (RR,GG,BB,RG,RB,GB)

Imagine a ball tray - only the balls and dividers matter!

$$200 \rightarrow \cdots || 110 \rightarrow \cdot | \cdot |$$

$$020 \rightarrow | \cdots 101 \rightarrow \cdot || \cdot$$

$$002 \rightarrow || \cdots 011 \rightarrow | \cdot || \cdot$$

We have 4 positions for 2 balls $\binom{4}{2}$ and 2 remaining positives for dividers $\binom{2}{2}$. By M.P.: $\binom{4}{2}\binom{2}{2}=6$

Repetition and Combinations

Example: At a cafeteria, how many ways exist to select 4 utensils from bins of forks, spoons, knives, & soup spoons?

Answer: 4 bins \Rightarrow 3 dividers, and 3 dividers + 4 utensils = 7 items

$$\therefore \binom{7}{4} = \binom{7}{3} = \frac{7!}{4!3!} = 35$$

 In General: When repetition is allowed, the number of r-combinations of a set on n objects is

$$\binom{n+r-1}{r} = \binom{n+r-1}{n-1} \text{ here } r = 4 \text{ utensils and } n = 4 \text{ bins}$$

Repetition and Combinations

A Small Extension:

Example: Consider a pot-luck with 5 platters of food. A child must have one serving from each platter but may have 3 more servings of anything. In how many ways can the child form 8 total servings?

Answer: Ignore the first 5 servings, there's just one way to select them. Then: 5 platters \Rightarrow 4 dividers, plus 3 servings = 7 items.

So,
$$\binom{7}{3} = 35$$

• In General: When repetition is allowed, the number of r-combinations of a set on n elements when one of each is included in r is

$$\binom{r-1}{r-n} = \binom{r-1}{n-1} \text{ here } r = 8 \text{ servings and } n = 5 \text{ platters}$$

Another View of Repetition and Combinations

 Consider: An integer variable can represent the quantity of items selected with repetition

Example: The Golf Ball Problem (again!)

Let r, b, g be the numbers of red, blue, and green balls the customer selects. Clearly $r, b, g \in \mathbb{Z}$.

We need solutions of r + b + g = 2 where r, b, g are ≥ 0 .

Or we need 2 pips (the sum) and 2 pipes (the plus signs).

Again,
$$\binom{4}{2} = 6$$
 ways to buy 2 golf balls of the 3 colors

Another View of Repetition and Combinations

Example: The Pot-luck Dinner Problem (again!)

Here, our equation is $x_1 + x_2 + x_3 + x_4 + x_5 = 8$ where $x_i \ge 1$. (≥ 1 b/c we need ≥ 1 serving each.)

Pips and pipes needs each term to be ≥ 0 To achieve this, let $y_i = x_i - 1$. This transforms the equation to:

$$y_1 + y_2 + y_3 + y_4 + y_5 = 3$$
 where $y_i \ge 0$

Or we need 3 pips (the sum) and 4 pipes (the plus signs).

As before,
$$\binom{7}{3} = \binom{7}{4} = 35$$
 ways to get 3 servings.

Generalized Permutations

Idea: What if some elements are indistinguishable?

Example:

Review: How many arrangements of the letters A-F are possible?

Answer: 6! = 720 = P(6,6)

How many arrangements of A, A, and B are possible? *Answer:* 3: AAB, ABA, BAA because the A's are indistinguishable. Otherwise, it's a simple permutation: 3! = 6. The difference: There are 2! = 2 ways to order the A's in each of the three arrangements, but here those orderings don't matter. Thus, $\frac{3!}{2!} = 3$

Generalized Permutations

What if we have indistinguishable copies of multiple elements?

Example:

How many distinguishable arrangements of the letters in the word TATTOO are possible?

Answer:
$$\frac{6!}{3!2!}$$
 = 60. There are 6! letter arrangements possible, but

3! arrangements of the T's and the 2! arrangements of the O's don't matter.

In general: If we have n objects of t different types, and there are i_k indistinguishable objects of type k, then the number of distinct

arrangements is
$$P(n; i_1, i_2, \dots, i_t) = \frac{n!}{i_1! i_2! \dots i_t!}$$

Generalized Permutations

• We can view $P(n; i_1, i_2, \dots, i_t)$ in terms of combinations

Example: Consider TATTOO again

There are
$$\binom{6}{3} = 20$$
 ways to place the T's, leaving 3 empty spaces. There are

$$\binom{3}{2} = 3$$
 ways to place the O's and $\binom{1}{1} = 1$ way to place the A. By the

multiplication Principle:
$$\binom{6}{3}\binom{3}{1}\binom{1}{1} = 20 \cdot 3 \cdot 1 = 60.$$

In General:

$$P(n; i_1, i_2, \dots, i_t) = \binom{n}{i_1} \binom{n - i_1}{i_2} \binom{n - i_1 - i_2}{i_3} \dots \binom{n - \dots - i_{t-1}}{i_t}$$

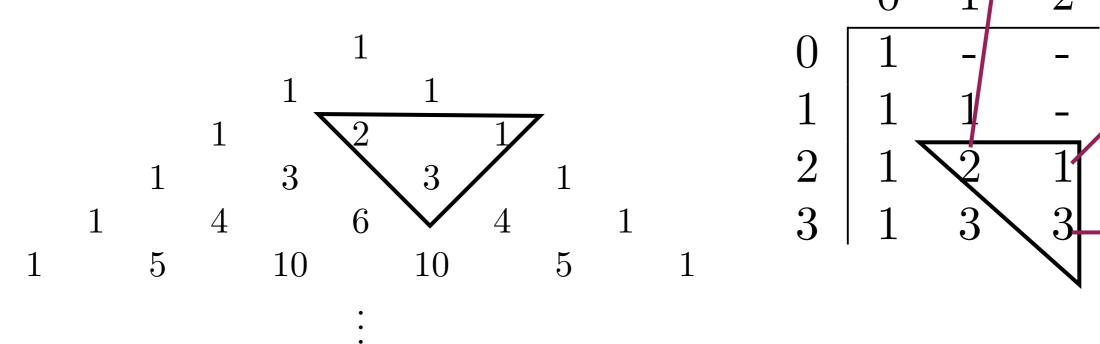
More Fun With Combinations

• What if we created a table of $\binom{n}{k}$ values?

This should look familiar...

Pascal's Triangle

... is just the centered rows of the $\binom{n}{k}$ table:



Observations:

1. Each row is palindromic:
$$\binom{n}{k} = \binom{n}{n-k}$$

2. "Pascal's Identity" (Inverted Triangles):
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

More Fun With Combinations

Conjecture:
$$\binom{n}{k} = \binom{n}{n-k}$$
, where $0 \le k \le n$

Proof (direct, algebraic):

$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!}$$

= $\frac{n!}{(n-k)!k!}$

= $\binom{n}{k}$

[By definition]

[Simplified]

[By definition]

Therefore,
$$\binom{n}{k} = \binom{n}{n-k}$$
, $0 \le k \le n$

Pascal's Identity (Combinatorial Argument Example)

Conjecture:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$
, where $1 \le k \le n$

Consider $S = \{W, X, Y, Z\}$. |S| = 4 = n + 1. Let k = 2.

There are $\binom{n+1}{k} = \binom{4}{2} = 6$ subsets of S of size 2:

$$\{\{W,X\},\{W,Y\},\{W,Z\},\{X,Y\},\{X,Z\},\{Y,Z\}\}$$

Consider element W. Either a subset contains W or it does not.

If W is included, to compete the subset we need one more item from the remaining three. There are $\binom{3}{1}$ such subsets.

If W is not included, to compete the subset we need two more items to make the subset, but again we have just three items to choose from: $\binom{3}{2}$

Thus the number of subsets is
$$\binom{4}{2} = \binom{3}{1} + \binom{3}{2}$$
 $(6 = 3 + 3)$

Pascal's Identity (Combinatorial Proof)

Definition: Combinatorial Proof

An argument based on the principles of counting

Conjecture:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$
, where $1 \le k \le n$

Proof (direct, combinatorial ("double counting")):

Let $d \in D$, and |D| = n + 1. Because sets are unordered, there are $\binom{n+1}{k}$ subsets of D of size k.

Some of these subsets include d, and the rest do not.

(Continued....)

Pascal's Identity (Combinatorial Proof)

Case 1: Subsets that include d. Differences are due to the other k-1 elements. We need to select those elements from the remaining (that is, non-d) values of D.

There are $\binom{n}{k-1}$ ways to do this.

Case 2: Subsets not including d. We need to select k more elements from D, again not counting d. There are $\binom{n}{k}$ ways to do this.

Together this is the total quantity of subsets.

Therefore,
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$
 where $1 \le k \le n$

The Binomial Theorem

The values of Pascal's triangle appear in numerous places.

For instance:

$$(a+b)^0 = 1$$

 $(a+b)^1 = 1a+1b$
 $(a+b)^2 = 1a^2 + 2ab + 1b^2$
 $(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$

Generalize this, and you've got the Binomial Theorem.

The Binomial Theorem

Theorem:
$$(a+b)^n = \sum_{k=0}^n \left[\binom{n}{k} \cdot a^{n-k} \cdot b^k \right]$$

Proof: See Rosen Sect 6.4 p 437-8. (Combinatorial!)

Example: Find the coefficient of x^5y^3 in the expansion of $(x + y)^8$.

By the above theorem: k = 3, n = 8, and so the

coefficient is
$$\binom{8}{3} = 56$$