Methods of Counting 6.1-6.6

The Pigeonhole Principle

Example: A 3-box Pigeon coop and 4 pigeons

Definition: Pigeonhole Principle
If n items are placed in k boxes, at least one box contains at least $\left\lceil\frac{n}{k}\right\rceil$ items
Definition: Pigeonhole Principle (w/functions)

$$
\text { Let } f: X \rightarrow Y,|X|=n,|Y|=k, \text { and } m=\left\lceil\frac{n}{k}\right\rceil .
$$

There are at least m values such that

$$
f\left(a_{1}\right)=f\left(a_{2}\right)=\ldots=f\left(a_{m}\right)
$$

The Pigeonhole Principle

Example:

The last week of the semester has just 3 days of class meetings but you have 7 assignments due that week. By the pigeonhole principle, at least on day has at least $\left\lceil\frac{7}{3}\right\rceil=$ 3 assignments due.

How many contacts must be in your cell phone to ensure that 2 last names begin with the same pair of letters?

Answer: $26^{2}+1=676+1=677$

The Multiplication Principle

Example:

How many possible 3 -digit octal numbers are there?
Answer: $\underline{8} \underline{8} \underline{8} \Rightarrow 8 \cdot 8 \cdot 8=8^{3}=2^{3^{3}}=2^{9}=512$

Definition: Multiplication Principle (a.k.a. Product Rule)

If there are s steps in an activity, with n_{x} ways to accomplish step x, then there are $n_{1} \cdot n_{2} \cdot \ldots \cdot n_{s}$ ways to complete all s steps.

For the Octal example, $s=3$ and $n_{1}=n_{2}=n_{3}=8$

The Multiplication Principle

Example:

Party choices: 3 to choose from on Thrusday, 6 on Friay, 5 on Saturday, and 2 on Sunday. If you attend only one party per night, how many party schedules can be created?

Answer: By the M.P. $3 \cdot 6 \cdot 5 \cdot 2=180$ schedules

Now consider three digital octal numbers without digit reuse. How many such values are there?

Answer: By the M.P. $8 \cdot 7 \cdot 6=336$
Note: $\left|P_{1} \times P_{2} \times \ldots \times P_{s}\right|=\left|P_{1}\right| \cdot\left|P_{2}\right| \cdot \ldots \cdot\left|P_{s}\right|$.

The Addition Principle

Definition: Addition Principle (a.k.a. Product Rule)

If there are t tasks, with n_{x} ways to accomplish the
$x^{t h}$ task, there are $n_{1}+n_{2}+\ldots+n_{t}$ ways to accomplish one of these tasks, assuming that the tasks are non-interfering.

Example:

You need to enroll in a literature class. 4 English Lit, 3 Poetry, and 5 World Lit classes fit your schedule.

By the A.P, there are $4+3+5=12$ possible ways for you to enroll in a Lit class.

The Addition Principle

Example:

Grade Sheet Identifiers 4-8 printable ASCII characters
How many IDs of 4 letters are there?
How many ID's of 5 letters are there?
But you can choose one of any of the 5 legal lengths.
By the A.P., there are

$$
\sum_{i=4}^{8} 95^{i}=6,704,780,953,650,625
$$

(6.7 quadrillion!) possible grade sheet identifiers

The Principle of Inclusion-Exclusion

- A problem with the Addition Principle:
- "Non-interfering" - no overlapping of tasks may occur!

Example:

I need a quiz question. I have four questions about matrices and three about relations. But if one is about matrix representation of relations, it is a member of both groups.
\Rightarrow The Addition Principle does not apply!
(It reports $4+3=7$, but there are only 6 questions - the intersecting question is
 being counted twice.)

The Principle of Inclusion-Exclusion

Definition: Principle of Inclusion-Exclusion for Two Sets

The cardinality of the union of sets M and N is the sum of their individual cardinalities, excluding the cardinality of their intersection
That is: $|M \cup N|=|M|+|N|=|M \cap N|$

```
\(\mid\) Matrix \(\cup\) Relation \(|=|\) Matrix \(|+|\) Relation \(|-|\) Matrix \(\cap\) Relation \(\mid\)
\(=4+3-1\)
\(=6\)
```


The Principle of Inclusion-Exclusion

Definition: Principle of Inclusion-Exclusion for Three Sets
The cardinality of the union of sets M, N, and O is the sum of their individual cardinalities, excluding the sum of the cardinalities of their pairwise intersections but including the cardinality of their intersection

$$
\text { That is: } \begin{aligned}
& |M \cup N \cup O|=|M|+|N|+|O| \\
& -|M \cap N|-|M \cap O|-|N \cap O| \\
& +|M \cap N \cap O|
\end{aligned}
$$

And, of course, this can be extended beyond 3 sets.

The Principle of Inclusion-Exclusion

- Why so complex?

The Principle of Inclusion-Exclusion

Example:

Let $|A|=6,|B|=5,|C|=7,|A \cap B|=2$,
$|A \cap C|=3,|B \cap C|=2$ and $|A \cap B \cap C|=1$.
What is $|A \cup B \cup C|$?
$|A \cup B \cup C|=6+5+7-(2+3+2)+1=12$ items

Hint: Fill the Venn diagram from the center and work outward.

Permutations

Definition: Permutation

An ordering of $n \geq 0$ distinct elements.

Example:

Consider a golf tournament with a 5 -way playoff between players A, B, C, D, and E. To determine the order of play they draw \#s from a hat.

This generates a permutation of the players ...
... but how many possible permutations are there?

Permutations

Conjecture: There are n ! possible permutations of n elements

Proof (direct):
There are n ways to select the 1 st element.
$n-1$ ways to select the 2 nd, etc.
By the multiplication principle, the number of possible orderings is $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1=n$!

Therefore, there are n ! possible permutations of n elements.

r-Permutations

Definition: $\underline{r \text {-Permutation }} \quad P(n, r)$
An ordering of an r-element subset of n distinct elements is called an r-permutation.

Conjecture: The number of r - permutations of n elements denoted $P(n, r)$, is $n \cdot(n-1) \cdot \ldots \cdot(n-r+1), r \leq n$

Proof Outline:

$$
\begin{array}{cc}
\text { 1st } \begin{array}{cc}
\text { 2nd } & \text { r-th } \\
n \cdot(n-1) & \ldots \cdot(n-(r-1)) \\
& \ldots \cdot(n-r+1)
\end{array}
\end{array}
$$

r-Permutations

Observation:

$$
\begin{aligned}
& n \cdot(n-1) \cdot \ldots \cdot(n-r+1) \cdot(n-r) \cdot \ldots \cdot 2 \cdot 1=n! \\
& P(n, r)=\frac{n!}{(n-r)!}
\end{aligned}
$$

Example:
How many 3-permutations can be formed from 5 elements?
$n-r+1=5-3+1=3$ and $5 * 4 * 3=60$
Or: $P(5,3)=\frac{n!}{n-r}!=\frac{5!}{2!}=\frac{5 * 4 * 3 * 2 * 1}{2 * 1}=60$

r-Permutations

Example:

16 countries are competing for medals (gold, silver, and bronze) in Team Discrete math at the Olympics. In how many was can medals be awarded?

Answer: $P(16,3)=\frac{16!}{13!}=16 \cdot 15 \cdot 14=3360$

r - Combination

Definition: r-Combination

An r-Combination of an n-element set X is an r-element subset of X. The quantity of r - element subsets is denoted $C(n, r)$ or $\binom{n}{r}$, and is read " n choose r

Other Notations: ${ }_{n} C_{r} \quad C_{r, n}$

Example:

In how many ways my 2 -element subsets be chosen from $\{A, B, C\}$?
Answer: Order does not matter in sets, so $\binom{3}{2}=3$
The sets: $\{A, B\},\{A, C\}$, and $\{B, C\}$.
Note that $P(3,2)=6$.

r - Combination

The r-Permutation - r-Combination Connection:
When order matters, the \# of choices grows
Example: $\{A, B\}$ vs. (A, B) and (B, A).
But ... grows by how much? There are r ! possible arrangements, so:

$$
P(n, r)=\binom{n}{r} \cdot r!, \text { or }\binom{n}{r}=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
$$

Example:
$\binom{5}{3}=\frac{P(5,3)}{3!}=\frac{60}{6}=10$
Or: $\frac{5!}{3!(5-3)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}=10$

r - Combination

Example:

From a Chess Club of 12 members, how many 'traveling squads' of 6 can be formed?

Answer: Order doesn't matter, so: $\binom{12}{6}=924$

The University is forming a committee with 5 (of 9 available) faculty and (of 8) staff members. In how many ways can the committee be formed?

Answer: By combinations and the Multiplication Principle:
$\binom{9}{5} \cdot\binom{8}{4}=126 \cdot 70=8820$

Repetition and Permutations

- We've already seen this!
- but we haven't been allowing repetition recently

Example:

Recall: 3 digit octal numbers:
With repetition: $8 \cdot 8 \cdot 8$
Without repetition: $8 \cdot 7 \cdot 6$

- In General: When object repetition is permitted, the number of r-permutations of a set on n objects is n^{r} Here: 8^{3}

Repetition and Combinations

Example: ‘Experienced’ Golf Balls
In how many ways can a golfer select two balls

Pips \& Pipes

Answer: 6 (RR,GG,BB,RG,RB,GB)
Imagine a ball tray - only the balls and dividers matter!

$$
\begin{array}{cc}
200 \rightarrow \cdots \| & 110 \rightarrow \cdot|\cdot| \\
020 \rightarrow \mid \cdot & 101 \rightarrow \cdot \| \cdot \\
002 \rightarrow \| \cdot & 011 \rightarrow|\cdot| \cdot
\end{array}
$$

We have 4 positions for 2 balls $\binom{4}{2}$ and 2 remaining positives for dividers $\binom{2}{2}$). By M.P.: $\binom{4}{2}\binom{2}{2}=6$

Repetition and Combinations

Example: At a cafeteria, how many ways exist to select 4 utensils from bins of forks, spoons, knives, \& soup spoons?

Answer: 4 bins $\Rightarrow 3$ dividers, and
3 dividers +4 utensils $=7$ items

$$
\therefore\binom{7}{4}=\binom{7}{3}=\frac{7!}{4!3!}=35
$$

- In General: When repetition is allowed, the number of r-combinations of a set on n objects is

$$
\binom{n+r-1}{r}=\binom{n+r-1}{n-1} \text { here } r=4 \text { utensils and } n=4 \text { bins }
$$

Repetition and Combinations

- A Small Extension:

Example: Consider a pot-luck with 5 platters of food.A child must have one serving from each platter but may have 3 more servings of anything. In how many ways can the child form 8 total servings?

Answer: Ignore the first 5 servings, there's just one way to select them. Then: 5 platters $\Rightarrow 4$ dividers, plus 3 servings $=7$ items.
So, $\binom{7}{3}=35$

- In General: When repetition is allowed, the number of r-combinations of a set on n elements when one of each is included in r is
$\binom{r-1}{r-n}=\binom{r-1}{n-1}$ here $r=8$ servings and $n=5$ platters

Another View of Repetition and Combinations

- Consider: An integer variable can represent the quantity of items selected with repetition

Example: The Golf Ball Problem (again!)

Let r, b, g be the numbers of red, blue, and green balls the customer selects. Clearly $r, b, g \in \mathbb{Z}$.
We need solutions of $r+b+g=2$ where r, b, g are ≥ 0.
Or we need 2 pips (the sum) and 2 pipes (the plus signs).
Again, $\binom{4}{2}=6$ ways to buy 2 golf balls of the 3 colors

Another View of Repetition and Combinations

Example: The Pot-luck Dinner Problem (again!)
Here, our equation is $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=8$ where $x_{i} \geq 1$. ($\geq 1 \mathrm{~b} / \mathrm{c}$ we need ≥ 1 serving each.)
Pips and pipes needs each term to be ≥ 0 To achieve this, let $y_{i}=x_{i}-1$. This transforms the equation to:

$$
y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=3 \text { where } y_{i} \geq 0
$$

Or we need 3 pips (the sum) and 4 pipes (the plus signs).
As before, $\binom{7}{3}=\binom{7}{4}=35$ ways to get 3 servings.

Generalized Permutations

- Idea: What if some elements are indistinguishable?

Example:

Review: How many arrangements of the letters A-F are possible?
Answer: $6!=720=P(6,6)$

How many arrangements of A, A, and B are possible?
Answer: 3: AAB, ABA, BAA because the A's are indistinguishable. Otherwise, it's a simple permutation: $3!=6$. The difference: There are $2!=2$ ways to order the A's in each of the three arrangements, but here those orderings don't matter. Thus, $\frac{3!}{2!}=3$

Generalized Permutations

- What if we have indistinguishable copies of multiple elements?

Example:

How many distinguishable arrangements of the letters in the word
TATTOO are possible?
Answer: $\frac{6!}{3!2!}=60$. There are $6!$ letter arrangements possible, but
3 ! arrangements of the T's and the 2 ! arrangements of the O's don't matter.

In general: If we have n objects of t different types, and there are i_{k} indistinguishable objects of type k, then the number of distinct arrangements is $P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)=\frac{n!}{i_{1}!i_{2}!\ldots i_{t}!}$

Generalized Permutations

- We can view $P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)$ in terms of combinations

Example: Consider TATTOO again
There are $\binom{6}{3}=20$ ways to place the T's, leaving 3 empty spaces. There are $\binom{3}{2}=3$ ways to place the O's and $\binom{1}{1}=1$ way to place the A. By the multiplication Principle: $\binom{6}{3}\binom{3}{1}\binom{1}{1}=20 \cdot 3 \cdot 1=60$.

In General:
$P\left(n ; i_{1}, i_{2}, \ldots, i_{t}\right)=\binom{n}{i_{1}}\binom{n-i_{1}}{i_{2}}\binom{n-i_{1}-i_{2}}{i_{3}} \ldots\binom{n-\ldots-i_{t-1}}{i_{t}}$

More Fun With Combinations

- What if we created a table of $\binom{n}{k}$ values?

			k			
	0	1	2	3	4	5
0	1	-	-	-	-	-
1	1	1	-	-	-	-
n 2	1	2	1	-	-	-
3	1	3	3	1	-	-
4	1	4	6	4	1	-
5	1	5	10	10	5	1

This should look familiar...

Pascal's Triangle

... is just the centered rows of the $\binom{n}{k}$ table: $\quad\binom{n-1}{k-1}$

Observations:

1. Each row is palindromic: $\binom{n}{k}=\binom{n}{n-k}$
2. "Pascal's Identity" (Inverted Triangles): $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$

More Fun With Combinations

Conjecture: $\binom{n}{k}=\binom{n}{n-k}$, where $0 \leq k \leq n$
Proof (direct, algebraic):

$$
\left.\begin{array}{rlrl}
\binom{n}{n-k} & = & \frac{n!}{(n-k)!(n-(n-k))!} & \\
& = & & \text { [By definition] } \\
& = & & \\
& & & \text { [Simplified] } \\
& & (n-k)!k! \\
k
\end{array}\right) \quad[B y \text { definition] }
$$

Therefore, $\binom{n}{k}=\binom{n}{n-k}, 0 \leq k \leq n$

Pascal's Identity (Combinatorial Argument Example)

Conjecture: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$, where $1 \leq k \leq n$
Consider $S=\{W, X, Y, Z\} .|S|=4=n+1$. Let $k=2$.
There are $\binom{n+1}{k}=\binom{4}{2}=6$ subsets of S of size 2 :
$\{\{W, X\},\{W, Y\},\{W, Z\},\{X, Y\},\{X, Z\},\{Y, Z\}\}$
Consider element W. Either a subset contains W or it does not.
If W is included, to compete the subset we need one more item from the remaining three. There are $\binom{3}{1}$ such subsets.

If W is not included, to compete the subset we need two more items to make the subset, but again we have just three items to choose from: $\binom{3}{2}$

Thus the number of subsets is $\binom{4}{2}=\binom{3}{1}+\binom{3}{2} \quad(6=3+3)$

Pascal's Identity (Combinatorial Proof)

Definition: Combinatorial Proof

An argument based on the principles of counting
Conjecture: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$, where $1 \leq k \leq n$
Proof (direct, combinatorial ("double counting")):
Let $d \in D$, and $|D|=n+1$. Because sets are unordered, there are $\binom{n+1}{k}$ subsets of D of size k.

Some of these subsets include d, and the rest do not.
(Continued....)

Pascal's Identity (Combinatorial Proof)

Case 1: Subsets that include d. Differences are due to the other $k-1$ elements. We need to select those elements from the remaining (that is, non- d) values of D.

There are $\binom{n}{k-1}$ ways to do this.
Case 2: Subsets not including d. We need to select k more elements from D, again not counting d. There are $\binom{n}{k}$ ways to do this.

Together this is the total quantity of subsets.
Therefore, $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ where $1 \leq k \leq n$

The Binomial Theorem

The values of Pascal's triangle appear in numerous places.
For instance:

$$
\begin{aligned}
(a+b)^{0} & =1 \\
(a+b)^{1} & =1 a+1 b \\
(a+b)^{2} & =1 a^{2}+2 a b+1 b^{2} \\
(a+b)^{3} & =1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
\end{aligned}
$$

Generalize this, and you've got the Binomial Theorem.

The Binomial Theorem

Theorem: $(a+b)^{n}=\sum_{k=0}^{n}\left[\binom{n}{k} \cdot a^{n-k} \cdot b^{k}\right]$
Proof: See Rosen Sect 6.4 p 437-8. (Combinatorial!)

Example: Find the coefficient of $x^{5} y^{3}$ in the expansion of $(x+y)^{8}$.
By the above theorem: $k=3, n=8$, and so the
coefficient is $\binom{8}{3}=56$

