Methods of Counting

6.1-6.6



The Pigeonhole Principle

Example: A 3-box Pigeon coop and 4 pigeons

Definition: Pigeonhole Principle

If n items are placed in k boxes, at least one box
n
contains at least [—1 items

Definition: Pigeonhole Principle (w/functions)

n
letf: X > Y, |X|=n,|Y| =k andm = [21

There are at least m values such that

Nay) = flay) = ... = fa,,)



The Pigeonhole Principle

Example:

The last week of the semester has just 3 days of class

meetings but you have 7 assignments due that week. By

]
the pigeonhole principle, at least on day has at least [—1 =

3

3 assignments due.

How many contacts must be in your cell phone to ensure
that 2 last names begin with the same pair of letters?

Answer: 26°+ 1 =676+ 1 = 677



The Multiplication Principle

Example:

How many possible 3-digit octal numbers are there?

Answer: 888 = 8-8-8 =8’ =233 =27 =512

Definition: Multiplication Principle (a.k.a. Product Rule)

If there are s steps in an activity, with n ways to
accomplish step x, then therearen, - n, - ... - n,

ways to complete all s steps.

For the Octal example, s = 3 and ny = n, = ny; = 8



The Multiplication Principle

Example:

Party choices: 3 to choose from on Thrusday, 6 on Friay, 5 on
Saturday, and 2 on Sunday. If you attend only one party per
night, how many party schedules can be created?

Answer: By the M.P. 3 - 6 - 5 - 2 = 180 schedules

Now consider three digital octal numbers without digit reuse.
How many such values are there?

Answer: Bythe M.P.8 -7 -6 = 336
Note: |P{ X Py X ...X P | =|P;|-|Py|-... | P|.




The Addition Principle

Definition: Addition Principle (a.k.a. Product Rule)

If there are  tasks, with n, ways to accomplish the

x™ task, there are ny+n,+ ... +n,waysto
accomplish one of these tasks, assuming that the
tasks are non-interfering.

Example:

You need to enroll in a literature class. 4 English Lit, 3
Poetry, and 5 World Lit classes fit your schedule.

By the A.P, there are 4 + 3 + 5 = 12 possible ways for you
to enroll in a Lit class.



The Addition Principle

Example:

Grade Sheet Identifiers 4-8 printable ASCII characters
How many IDs of 4 letters are there?

How many ID’s of 5 letters are there?

But you can choose one of any of the 5 legal lengths.

By the A.P,, there are

8
Z 95 = 6.704,780,953.650.625
i=4

(6.7 quadrillion!) possible grade sheet identifiers



The Principle of Inclusion-Exclusion

* A problem with the Addition Principle:
* “Non-interfering” - no overlapping of tasks may occur!

Example:

| need a quiz question. | have four questions about matrices
and three about relations. But if one is about matrix
representation of relations, it is a member of both groups.

= The Addition Principle does not apply! (o’
(It reports 4 + 3 = 7/, but there are only 6
questions - the intersecting question is Matrix _Relation
being counted twice.)




The Principle of Inclusion-Exclusion

Definition: FPrinciple of Inclusion-Exclusion for Two Sets

The cardinality of the union of sets M and N is the

sum of their individual cardinalities, excluding the
cardinality of their intersection

Thatis: | MUN| = |M|+ |N|=|MnNN|

| Matrix U Relation | = | Matrix | + | Relation | — | Matrix N Relation |
=4+3-1
=6



The Principle of Inclusion-Exclusion

Definition: FPrinciple of Inclusion-Exclusion for Three Sets

The cardinality of the union of sets M, N, and O is the
sum of their individual cardinalities, excluding the sum
of the cardinalities of their pairwise intersections but
including the cardinality of their intersection

Thatis: |l MUNUO|=|M|+ |N|+|O]|
—|MNN|—-|MnNnO|—-|NNnO|
+|IMNNNO]

And, of course, this can be extended beyond 3 sets.



The Principle of Inclusion-Exclusion

e Why so complex?

B B B

N L LD
..

|A|+ |B|+ | C| —|ANnB|—-|ANnC|—-|BnC| +|ANBNC]|



The Principle of Inclusion-Exclusion

Example:

Let |A| =6, |B|=35,|C|=7,|AnB| =2,
IANC|=3,|BNC|=2and |[ANBNC|=1.

Whatis |[AUBUC|?
IAUBUC|=6+54+7—-2+3+2)+1=12items
Hint: Fill the Venn diagram from B
the center and work outward. VA’
ARV



Permutations

Definition: Permutation

An ordering of n > 0 distinct elements.

Example:

Consider a golf tournament with a 5-way playoff between
players A, B, C, D, and E. To determine the order of play

they draw #s from a hat.

This generates a permutation of the players ...
... but how many possible permutations are there?



Permutations

Conjecture: There are n! possible permutations of n elements

Proof (direct):

There are n ways to select the 1st element.

n — 1 ways to select the 2nd, etc.
By the multiplication principle, the number of possible
orderingsisn-(n—1)-n—-2)-...-2-1=n!

Therefore, there are n! possible permutations of n
elements.




r-Permutations

Definition: r-Permutation P(n,r)
An ordering of an r-element subset of 7 distinct

elements is called an r-permutation.

Conjecture: The number of - permutations of n elements
denoted P(n,r), isn-(n—1)-... - n—r+1), r<n

Proof Outline:

1st 2nd r-th
n-m—1-...-(n—wr-1))
.o n—r+1)




r-Permutations

Observation:

n-m—-1y-...-nm—-r+1):n—-r)-...-2-1=n!
n!

(n—r)!

P(n,r) =

Example:

How many 3-permutations can be formed from 5
elements?

n—r+1=5-3+1=3and5%4%3 =60
n! 51 5%4%3%2%]

Or: P(5,3) = | = — = = 60
n—r 2! 2*1]




r-Permutations

Example:

16 countries are competing for medals (gold, silver, and
bronze) in Team Discrete math at the Olympics. In how
many was can medals be awarded?

6!

1
Answer: P(16,3) = FEY] =16-15-14 = 3360



r- Combination

Definition: r-Combination

An r-Combination of an n-element set X is an r-element
subset of X. The quantity of r- element subsets is

denoted C(n, r) or (n

>, and Is read “n choose r
r

Other Notations: ,C, C,,
Example:

In how many ways my 2-element subsets be chosen from {A, B, C}?

3
Answer: Order does not matter in sets, so <2 =3

The sets: {A,B}, {A,C},and {B, C}.
Note that P(3,2) = 6.



r- Combination

The r-Permutation - r-Combination Connection:
When order matters, the # of choices grows

Example:{A, B} vs. (A, B) and (B, A).

But ... grows by how much? There are r! possible
arrangements, So:

n n P(n,r) n!
P(n,l"): °I"!,Or — —
(r> (r) r! rl(n—r)!

Example:
5 P(5,3) 60
3 3! 6
5! 5-4.-3-2-1

"3 5-3) 3-2-1-2-1



r- Combination

Example:
From a Chess Club of 12 members, how many ‘traveling squads’ of 6 can be

formed?

12
Answer: Order doesn't matter, so: ( 6 ) = 924

The University is forming a committee with 5 (of 9 available) faculty and (of 8)
staff members. In how many ways can the committee be formed?

Answer: By combinations and the Multiplication Principle:

9\ (8
. =126 - 70 = 8820
(5)- ()



Repetition and Permutations

e \We've a|ready seen this! - but we haven’t been allowing
repetition recently

Example:
Recall: 3 digit octal numbers:

With repetition: 8 - 8 - 8
Without repetition: 8 - 7 - 6

* |[n General: When object repetition is permitted, the
number of r-permutations of a set on n objects is n’

Here: &°



Repetition and Combinations

Example: ‘Experienced’ Golf Balls Pips & Pipes
In how many ways can a ““‘“ “"‘
golfer select two balls D2 N U

Red Green Blue
Answer: 6 (RR,GG,BB,RG,RB,GB)

Imagine a ball tray - only the balls and dividers matter!

200 — - - || 110 — -] |
020 = |-+ 101 — -||-
002 —||-- 011 —|-|

We have 4 positions for 2 balls ((2)) and 2 remaining positives
for dividers (@). By M.P: (‘2‘)@ =6



Repetition and Combinations

Example: At a cafeteria, how many ways exist to select 4
utensils from bins of forks, spoons, knives, & soup
spoons?

Answer: 4 bins = 3 dividers, and
3 dividers + 4 utensils = 7 items

7 7 7!
g = = = 35
(4) (3) 4131

e |n General: When repetition is allowed, the number of r-combinations
of a set on n objects is

n+r—1 n+r—1
= . here r = 4 utensils and n = 4 bins
r n—




Repetition and Combinations

e A Small Extension:

Example: Consider a pot-luck with 5 platters of food.A child
must have one serving from each platter but may have 3 more
servings of anything. In how many ways can the child form 8

total servings?

Answer: Ignore the first 5 servings, there’s just one way to select
them. Then: 5 platters =4 dividers, plus 3 servings = 7 items.

So, <7> = 35
3

e |n General: When repetition is allowed, the number of r-combinations
of a set on n elements when one of each is included in 7 is

r—1 r—1
= here r = 8 servings and n = 5 platters
r—n n—1



Another View of Repetition and
Combinations

e Consider: An integer variable can represent the quantity
of items selected with repetition

Example: The Golf Ball Problem (again!)

Let 7, b, g be the numbers of red, blue, and green balls the
customer selects. Clearly r,b, g € Z.

We need solutionsof r + b + g = 2 where r, b, g are > 0.
Or we need 2 pips (the sum) and 2 pipes (the plus signs).

A
Again, <2> = 6 ways to buy 2 golf balls of the 3 colors



Another View of Repetition and
Combinations

Example: The Pot-luck Dinner Problem (again!)

Here, our equation is x; + X, + X3 + x; + X5 = & where
x; > 1. (= 1 b/c we need > lserving each.)

Pips and pipes needs each term to be > 0 To achieve
this, let y, = x; — 1. This transforms the equation to:

Vi+ Y+ V3 +y,+ Yy =3 wherey, > 0
Or we need 3 pips (the sum) and 4 pipes (the plus signs).

7 7
As before, (3) = (4) = 35 ways to get 3 servings.



Generalized Permutations

e |dea: What if some elements are indistinguishable?

Example:
Review: How many arrangements of the letters A-F are possible?

Answer: 6! = 720 = P(6,6)

How many arrangements of A, A, and B are possible?

Answer: 3: AAB, ABA, BAA because the A’s are indistinguishable.
Otherwise, it’s a simple permutation: 3! = 6. The difference: There
are 2! = 2 ways to order the A's in each of the three arrangements,

3!

but here those orderings don't matter. Thus, 5 =3



Generalized Permutations

e What if we have indistinguishable copies of multiple elements?

Example:

How many distinguishable arrangements of the letters in the word
TATTOQ are possible?
6!
312!

3! arrangements of the T's and the 2! arrangements of the O’s don't

Answer: = 60. There are 6! letter arrangements possible, but

matter.

In general: If we have n objects of t different types, and there are 1,
indistinguishable objects of type k, then the number of distinct
n!

i iy) ..

arrangements is P(n; i, 15, ...,1,) =



Generalized Permutations

o We can view P(n;i,1I,,...,1,) in terms of combinations

Example: Consider TATTOO again

There are = 20 ways to place the T’s, leaving 3 empty spaces. There are

3 1
(2> = 3 ways to place the O's and <1) = 1 way to place the A. By the

6\ /3 |
multiplication Principle: 3 1 1 =20-3-1 = 60.

In General:

n n—.Ii n—i; —1i n—...—1
P(n;il,iz,...,it)=<,>< | 1>( ! 2)( | H)
3 %) 3 l



More Fun With Combinations

o What if we created a table of <Z> values?

k
0O 1 2 3 4 5
0 B B B B B This should look
1 1 - - - - familiar...
n 2 2 1 - - -
3 3 3 1 - -
4 4 6 4 1 -
5 b 10 10 5 1




Pascal’s Triangle

1 1
1 2
1 3 3 1
1 4 6 4 1
1 D 10 10 5 1

Observations:

1. Each row is palindromic: (n) = ( " >
k n—=k

-1 — 1
2. “Pascal’s Identity” (Inverted Triangles): <Z> = <n > + (

0

w N = O




More Fun With Combinations

Conjecture: <Z> — < " k), where 0 < k<n
-

Proof (direct, algebraic):

n . n!
(n—k) — (n—k)!l(n—(n—k))! [By definition]
n!
— (n—k)'k! [Simplified]
n
— ( k) [By definition]

n n
Therefore, < = < >, 0<k<n
k n—=k




Pascal’s ldentity (Combinatorial
Argument Example)

Conjecture: (n+1> = ( " >+ <n>,where1 <k<n
k k—1 k

Consider S = {W,X,Y,Z}). |S|=4=n+1. Letk = 2.

There are <nz 1) = G) = 6 subsets of S of size 2:

HUW. XL W YL AW, Z} X, Y} AX Z) L, (Y, Z}
Consider element W. Either a subset contains W or it does not.

If Wis included, to compete the subset we need one more item from the

. 3
remaining three. There are <1>such subsets.

If W is not included, to compete the subset we need two more items to make the

. . : 3
subset, but again we have just three items to choose from: <2>

Thus the number of subsets is <;> — (?) + (;) (6=3+3)




Pascal’s Identity (Combinatorial Proof)

Definition: Combinatorial Proof
An argument based on the principles of counting

Conjecture: <”Z 1> — <kf 1> 4 (Z), where | <k <n

Proof (direct, combinatorial (*double counting”)):

letd € D, and |D| = n + 1. Because sets are
unordered, there are (nz 1> subsets of D of size k.

Some of these subsets include d, and the rest do not.

(Continued....)




Pascal’s Identity (Combinatorial Proof)

Case 1: Subsets that include d. Differences are due to the
other kK — 1 elements. We need to select those elements from
the remaining (that is, non-d) values of D.

n

There are < > ways to do this.

Case 2: Subsets not including d. We need to select kK more

elements from D, again not counting d. There are <Z> ways to
do this.

Together this is the total quantity of subsets.

Therefore, <n+1> = < ! >+ <n> where 1l < k<n
k k—1 k




The Binomial Theorem

The values of Pascal's triangle appear in numerous places.

For instance:

(a+0)° = 1

(a +b)* la + 1b

(a + b)? la? + 2ab + 1b°

(a+0b)° = 1a° + 3a?b + 3ab* + 1b°

Generalize this, and you’ve got the Binomial Theorem.



The Binomial Theorem

Theorem: (a + b)" = Z [(Z) a7k bk]

k=0

Proof: See Rosen Sect 6.4 p 437-8. (Combinatorial!)

Example: Find the coefficient of x5y3 in the expansion of
(x +y)°.
By the above theorem: kK = 3, n = 8, and so the

8
coefficient is ( ) = 56

3




