Functions 2.3

Functions as Relations

- Consider $f(x) = x + 1, x \in \mathbb{Z}$
 - Alternate notation:

•
$$f = \{(x, x + 1) | x \in \mathbb{Z}\}$$

Definition: *Function*

A function *f* from set *X* to *Y*, denoted $f: X \to Y$, is a relation from *X* to *Y*, where f(x) is defined $\forall x \in X$ and, if $(x, y) \in f$, then *y* is the **only value** returned by f(x).

Functions as Relations

Example:

- $f = \{(x, x+1) \mid x \in \mathbb{Z}\}$
- Is f a relation?
- Is f(x) is defined for all integers?
- Is x + 1 is the only value returned by f(x)?

Letter grades assigned to students:

- $X = \{$ Zeus, Leto, Apollo $\}$
- $Y = \{A, B, C, D, E\}$
- $G = \{(\mathbf{Zeus}, A), (\mathbf{Leto}, A), (\mathbf{Apollo}, C)\}$

Playposit

Definition: *Function*

A function *f* from set *X* to *Y*, denoted $f: X \to Y$, is a relation from *X* to *Y*, where f(x) is defined $\forall x \in X$ and, if $(x, y) \in f$, then *y* is the **only value** returned by f(x).

Function Terms

Let $f: X \to Y$ be a function and let f(n) = p.

- X is the <u>domain</u> of f
- Y is the <u>codomain</u> of f
- *f* _____ *x* to *Y*
- *p* is the <u>image</u> of *n*
- *n* is the <u>pre-image</u> of *p*
- f's <u>range</u> is the set of all images of X's elements

Note: A function's range need note equal its codomain.

Function Terms

Example:

- $g = \{(a,b) \, | \, b = a/2\}, \, a \in \{0,\!2,\!4,\!8\}, \, b \in \{0,\!1,\!2,\!3,\!4,\!5\}$
- Domain: {0,2,4,8}
- Codomain: {0,1,2,3,4,5}
- Image (of (8,4)): 4
- Pre-image (of (8,4)): 8
- Range (of g): {0,1,2,4}

Digraph Representation

Example:

 $g = \{(a,b) \, | \, b = a/2\}, \, a \in \{0,\!2,\!4,\!8\}, \, b \in \{0,\!1,\!2,\!3,\!4,\!5\}$

The incoming arrows identify the range members

Digraph Representation

Example:

- $A = \{(\beta, y)\} \text{ from } \{\alpha, \beta\} \text{ to } \{y, z\}$
- $B = \{(\alpha, y), (\alpha, z), (\beta, y)\} \text{ from } \{\alpha, \beta\} \text{ to } \{y, z\}$

Neither are functions: In A, α is unused (function not defined \forall domain) In B, α is related to multiple codomain values

- 1. Floor ($\lfloor x \rfloor$)
- **Definition:** *Floor Function*
 - The floor of a real value n, denoted $\lfloor n \rfloor$, is the largest integer $\leq n$

See also: Math.floor() in the Java API

1. Floor $(\lfloor x \rfloor)$ (cont)

Using Floor for Rounding to the Nearest integer

Easy: Just add 0.5, then 'floor it'. Example:

Round 3.50:

Round 3.99:

Round 4.49:

In General:

2. Ceiling ($\lceil x \rceil$)

Definition: <u>Ceiling Function</u>

The ceiling of a real value m, denoted $\lceil m \rceil$, is the largest integer $\geq m$

Example:

See also: Math.ceil() in the Java API

2. Ceiling ($\lceil x \rceil$)

Example:

Plan: \$0.50 for calls ≤ 10 min., plus \$0.05 per additional minute

Example: 11.5 minute call \Rightarrow 60 cents.

First try:

```
Cost (length) 50 + 5 \cdot \lceil \text{length} - 10 \rceil cents.
```

 \Rightarrow But: Fails when length ≤ 10

Fixed:

Cost (length) =
$$\begin{cases} 50 & \text{length} \le 10\\ 50 + 5 \cdot \lceil \text{length} - 10 \rceil & \text{Otherwise} \end{cases}$$

Example: Type A UPC code Check Digits

- The check digit equals the image of this function:
 - s = Sum of digits in positions 1, 3, 5, 7, 9, & 11
 - t =Sum of digits in positions 2, 4, 6, 8, & 10
 - u = 3s + t; the check digit is (10 u% 10)% 10
- Using the above sample:
 - s = 39, t = 24, and u = 3(39) + 24 = 141
 - Check digit = (10 141 % 10) % 10 = 9

Plots of Functions

- Important Distinction: *Continuous* vs. *Discontinuous Functions*
- Consider: $f = \{(x, x + 1) | x \in ... \}$

Plots of Functions

 How should the plot of our long-distance calling plan function look?

This is an example of a *piecewise function*

Categories of Functions: Injective

Definition: *Injective Functions* (a.k.a One-to-One)

A function *f* from set *X* to *Y* is injective if, for each $y \in Y$, f(x) = y for at most one member of *X*

Example:

$$F = \{(\alpha, 4), (\beta, 1), (\gamma, 2)\} \text{ from } \{\alpha, \beta, \gamma\} \text{ to } \{1, 2, 3, 4\}$$

Each *y* has 0 or 1 incoming arrows

∴ it's injective

Categories of Functions: Surjective

Definition: <u>Surjective Functions</u> (a.k.a Onto)

A function f from set X to Y is surjective if, f's range is Y (that is, the range equals the codomain)

Example:

 $F = \{(\alpha, 4), (\beta, 1), (\gamma, 2)\} \text{ from } \{\alpha, \beta, \gamma\} \text{ to } \{1, 2, 3, 4\}$

F is <u>not</u> surjective: 3 is not used.

Surjective functions: Each y has ≥ 1 incoming arrows

Categories of Functions: Bijective

Definition: <u>*Bijective Functions*</u> (a.k.a One-to-One Corresondence)

A function f from set X to Y is bijective if it is both injective and surjective

Example:

Each *y* has exactly 1 incoming arrow Note: |X| = |Y|

Odds and Ends

Definition: *Functional Composition*

Let $f: Y \to Z$ and $g: X \to Y$. The composition of f and g, denoted $f \circ g$, is the function h = f(g(x)), where $h: X \to Z$

Definition: <u>Inverse Functions</u>

The inverse of a bijective function f, denoted f^{-1} , is the relation $\{(y, x) | (x, y) \in f\}$

(Note the bijective requirement, otherwise the definition is the same as that of relational inverse)

Beyond Unary Functions

Definition: <u>Binary Function</u>

A binary function is a function $f: X \times Y \rightarrow Z$, (f(x, y) = z)

Example: Wind Chill (*)

 $WC(T, V) = (0.2175T - 35.75)V^{0.16} + 0.6215T + 35.74$ where V is wind speed (mph) and T is air temp in °F

(Heat index is also a binary function, but messier!)

(*) Developed by the Joint Action Group for Temperature Indices and adopted by the US, UK, and Canada in Nov. 2001