Appendix A

Math Review

This book does not expect that the reader has any more mathematical back-
ground than college algebra. That is, you should already be comfortable with
algebraic expressions, polynomials, exponents and logarithms, functions, etc.
For some of you, much time has passed since you learned this material. To
ensure that you can handle discrete structures, reading this appendix is rec-
ommended. Note that some college algebra topics are covered in the main
body of this book; that is, you won’t find all of them here.

A.1 Fractions

Fractions do not appear often in discrete structures, but often enough that
reviewing — and practicing — the basics is a good idea. Students lose many
points by performing manual manipulations of fractions carelessly.

Definition 71: Common Fraction

A common fraction' is the quotient of two integers x (the numerator)
and y (the demominator), written x/y or %> where the denominator is
not zero.

( WTEX: \frac{x}{y} produces %)

In the form z/y, the / is commonly known as a forward slash, but may also
be known as a solidus, virgule, or even separatriz,® depending on the context

!Common fractions are also known as vulgar fractions. No kidding!
28till not kidding. Who says appendices have to be boring?
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in which it is used. The little horizontal line in % is a vinculum.?

Table 21: Common Fraction Equalities
_ T o e
s+l - en srr - =tw
F A T — =y z _ Yy TZ—Wy
z z z w z wz
Ow = % EHH = =
= (0= [T
(a) Equal Denominators (b) Unequal Denominators

Table 21 shows the basics of fraction addition, subtraction, multiplication,
and division.

Example 197 demonstrates several fraction operations, including removing
common factors to reduce the result to lowest terms.

Example 197:

1,3
143 .
Problem: Evaluate $5% — % and, if necessary, reduce the result.
12
1 3 8 18 26 26
jom: 808 _ 4 _ astas 4 _ 38 4 _ iz 4 _ (26)(48y 4
Solution: iii =44 =4 =R = (48)(20) 5
12 12 12 48
26 4 2 16 _ 10 1
~20° 5 20 20 20 2

A.2 Rational Numbers

Fractions consisting of integers lead us directly to numbers that either can, or
cannot, be expressed as common fractions.

3Vinculum’ was also used as the name of a processing unit in a Borg vessel in Star Trek:
Voyager.

Draft: July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!



A.2. RATIONAL NUMBERS 291

Definition 72: Rational Number

A value that can be expressed as the ratio of two integers is a rational

number.

Notice that the word “ratio” appears in both the definition and within the
word “rational.” This makes the definition easy to remember.

How can we determine whether or not decimal values, such as 3.375, are
rational? If the fractional part (the part to the right of the decimal point) is a
terminating sequence of digits (that is, if the fractional part does not continue
indefinitely), then the entire value can be expressed as a fraction.

Example 198:

Problem: Demonstrate that the decimal value 3.375 can be expressed as
a rational number.

Solution: 3.375 is a representation of the sum of two fractions: % and
375 3 | 375 _ 3000 , 375 _ 3375 . .
1000: 1 1 1000 = T000 T 006 = ioog- Thus, 3.375 is a rational number,

: ;o 3375
because we can express it exactly by the (unreduced) fraction {555-

Decimal values with repeating fractional parts (such as 17.4444... or
0.87262626 . ..)* are also rational numbers, as Example 199 illustrates.

Example 199:

Problem: Demonstrate that 0.87262626 ... can be represented as the ra-
tio of two integers.

Solution: Let x = 0.87262626.... We can multiply both sides by 100,
which leaves the fractional part consisting of only the repeating dig-
its (100z = 87.262626...). Multiplying by 10,000 leaves the fractional
part with the same repeating pattern: 10000z = 8726.262626.... In
both cases, the fractional part is representing the same value. By sub-

4 To highlight the repeating portions of such numbers, mathematicians use an overbar
( BTEX: \overline{}) to indicate the repeating part. For example, 0.87262626... can be
represented as 0.8726. This ‘overbar’ can also be called a vinculum.
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tracting the left and right sides of the 100z equality from those of the
10000z equality, we learn that 9900x = 8639, or x = %. That is,
0.87262626 ... = 5033

You may be surprised to read that 3.375 (and any so-called ‘terminating’
decimal value) is actually a repeating decimal! This is correct because we can
append infinitely many zeros to it (3.37500000 . ..) without changing its value;
thus, it is technically a repeating decimal. As a practical matter, writing such
values with “000...” at the end is unnecessary if we accept that, notationally,
3.375 represents 3.375000.. ..

What about values that cannot be expressed as the ratio of two inte-
gers? They are called irrational numbers. Examples include the values 7
(3.1415926...), e (2.71828...), and /2 (1.4142...). If a decimal value’s frac-
tional part is terminating or repeating, the value is rational. Otherwise, the
value is irrational.

A.3 Set Basics

Set notation and set operators are used throughout discrete structures. Stu-
dents frequently know the basics before studying discrete structures, which is
why we cover them in this appendix. More advanced set topics are covered in
the main part of this book.

Definition 73: Set

A set is an unordered collection of unique objects.

We show the elements of a set by listing them, comma-separated, inside
of ‘curly brackets’ ( WTEX: \{ and \}), a.k.a. ‘braces’®> We'll use upper-case
letters to label sets for later reference.

Example 200:

A rainbow’s colors are red, orange, yellow, green, blue, indigo, and vio-
let.% The set of a rainbow’s colors can be written as:

5 If you can get over the association with the appliances of teenage dental torture.
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R = {red, orange, yellow, green, blue, indigo, violet }.

Because order doesn’t matter to sets, there are 7! = 5,040 acceptable
ways to list the elements of set R.

As the definition says, the elements of a set must be unique. That is, an
element may appear in a specific set at most once.

Example 201:

The set of letters in the word ‘letter’: S = {l,e,t,r}

Note that, if you need to have a set that allows duplicates, the concept
has already been invented. Such sets are known as multisets or bags.

A.3.1 Set Notation

Much notation is associated with sets. Here are the basics:

o Toindicate that an element is a member of a set, use € ( XTEX \in). Re-
ferring to Example 201, e € S. To negate this, use ¢ ( KTEX: \not\in),
asin f & S.

e A set with no members, known as the empty set, is represented by a
set of curly brackets with nothing in-between ({ }) or by the symbols
( BTRX: \emptyset) or @ ( XTRX: amssymb’s \varnothing).”

o The elements of some sets are difficult (sometimes impossible!) to enu-
merate. To define such sets, we use set builder notation. The format:
{variable(s) | description of set membership}. ( WTEX: \mid produces
the vertical line.)

e The entire collection of set elements available in a given situation is
known as the universal set , which we will represent with the symbol U

( BTEX: \mathcal{U}).

5The first letters of which, in order, form a name famous to schoolchildren if not to
history: Roy G. Biv. But we’re talking sets here, not sequences!
Tamssymb is an optional package for IXTEX that supplies additional math symbols
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Example 202:

e€S Show that e is a member of set S
teS Show that f is not an element of S
{t | tis a positive multiple of 3} {3,6,9,12,...}

{a | aisa UNICODE symbol}  There are 110,181 in UNICODE 6.1!
u=1{0,1,2,3} All possible Base 4 digits

A.3.2 Fundamental Set Operators

We will cover four set operators here. Others will introduced in the body of
this book as they are needed.

Draft:

Union (U, ITEX: \cup): A binary operator that combines the elements
from the two operand sets into a single result set. If an element appears
in both operand sets, it will appear only once in the result set.

Intersection (N, I¥TEX : \cap): Like union, intersection is a binary
operator. Unlike union, the result set contains the elements that the
operand sets have in common.

Difference (—, KTIEX: -): In S — T, the result set contains those
elements of S that are not also in T. Alternatively, think of the result set
temporarily containing all elements of S. Remove from the result set all
items also found in the set SNT. The remaining elements comprise S—T.
Some people use the term relative complement instead of difference, and
use \ ( WTEX: \backslash) instead of — as the symbol.

Complement (set, ITEX: \overline{set}): In a given setting, we
know that the elements of a set are limited by the universal set. The
complement of a set S, S, is the set of all elements of the universal set
that are not members of S. That is, S=U — S.

Cardinality (| set |, INTEX: $\mid set \mid$): The cardinality of a set
is the quantity of items in the set.

July 6, 2019 Copyright © Lester I. McCann Please do not distribute; thx!
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Example 203:

Let & = {0,1,3,4,5,7,8,9},D = {1,3,5,7,91,E = {4,8}, and F =
{1,4,7,9}.

(a) EUF ={1,4,7,8,9} f) F-D ={4}

(b) DNF={1,7,9} (g) E-D ={4,8}(=E)
(c) F  =1{0,3,5,8} (h) E-E =

d 0 =u @ [E] =

(e) FND={4} G) |E-E|=

The fact that F — D = FN D in Example 203 is not merely a coincidence,
it is also true for all pairs of sets from the same universal set. That is, for any
sets A and B whose elements are drawn from the same set &, A —B = ANB.
Operators, such as set difference and complement, that can be defined in terms
of primitive operators are sometimes called derived operators.

Set operators are subject to rules of precedence and associativity as are
any other operators. You are likely familiar with these concepts from the
programming language(s) you know. For example, in Java multiplication has
precdence over addition, telling us that, after the evaluation of the statement
a =4+ 5 % 6;, areceives the value 34 instead of 54. While you can find
precedence and associativity suggestions for set operators, no canonical rules
exist.® Rather than adding to the confusion, we will simply use parentheses
when necessary to order the operators in our set expressions.

A.3.3 Set Visualization with Venn Diagrams

To make the set operators easier to understand, Venn Diagrams are often used.
As Figure A.1 suggests, they are found on the internet nearly as frequently as
they are in discrete structures books.

The enclosing rectangle represents the universal set. Frequently, the label
U is placed in the upper-right corner as a reminder. Each set of interest within
the universe is represented with a labeled circle or other (usually curved)
‘blob.” These circles are positioned to overlap in a way that produces a region
for every possible relationship between the sets. Figure A.2 shows common
Venn diagram representations for two, three, and four sets.

8Some applications avoid the issue entirely. The database language SQL handles prece-
dence by considering all set operators to have the same precedence.
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GEEKS NERDS

PEORE
WIMH STRONG
OPINIONS ON THE.
DISTINCTION
RETWEEN GEEKS
AND NERDS

Figure A.1: Geeks and Nerds Venn Diagram (http://xkcd.com/747/).
Credit: Randall Munroe, xkcd. com.

Figure A.2: Standard 2-set, 3-set, and 4-set Venn Diagrams

By shading or otherwise highlighting the appropriate regions, visualiza-
tions of the results of set operations can be created. Figure A.3 shows Venn
diagram representations of the results of some of the expressions in Example
203. While the diagrams with the bold colors are eye-catching, the versions
with the cross-hatching are easier to create by hand by students taking timed
quizzes or exams.

A.3.4 Notations for Sets of Numbers

A reasonably well-accepted collection of labels exist that mathematicians use
to represent collections of numbers. Here are the labels used in this book:
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Figure A.3: Venn diagrams of (a) EUF, (b) DNF, (c) F, and (f) F — D.
Labels correspond to those of Example 203.

Table 22: Sets of Numbers
Symbol Name Set Representation
Z All Integers {..,—2,-1,0,1,2,...}
Z*,NT  Positive Integers {1,2,3,...}
Z*,No Non-negative Integers {0,1,2,3,...}
Y/ Negative Integers {-..,-3,-2,-1}
Z°v°™  Even Integers {...,—4,-2,0,2,4,...}
Z°dd  Odd Integers {..,-3,-1,1,3,...}
Q Rational Numbers {% | a,b € Zandb # 0}
Q Irrational Numbers {i]|i ¢ Qandi ¢ Imaginary}
R Real Numbers {QuUQ}

Some explanations are in order. Z ( BTEX: \mathbb{Z}) is used for inte-
gers because the German word for “integers” is “zahlen,” and many influential
mathematicians were German. (That, and several sets of numbers have names
that being with “I” in English, specifically “integer,” “irrational,” and “imag-
inary”) Z¢v® and Z°% are non-standard notations, but accepted symbols for
these sets do not exist and Z¢°" and Z°4 have the advantange of being easily
understood. Finally, Q is as accepted a symbol for the irrational numbers as
there is. We have just seen that the overline represents the complement of a
set, thus Q represents “not rational,” or “irrational.”

The relationships between most of these can be shown in a non-too-messy
Venn diagram; see Figure A.4.

You may be wondering about the omission of natural numbers, a set rep-
resented by the symbol N. The problem: What are the natural numbers,

exactly? Most mathematicians now consider zero to be ‘natural,” but others
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Figure A.4: A Visualization of Number Set Relationships

prefer the traditional interpretation, where a symbol isn’t needed until there
is something to count. To avoid confusion, we will ignore N and will use Z*
when we want natural numbers including zero and Z* when zero is excluded.

A.4 Associativity, Friends and a Distant Cousin

We know that algebraic expressions consist mostly of operands (values), oper-
ators (unary as well as binary), and grouping symbols (such as parentheses).
Set and logical expressions, both of which are common in discrete structures,
have these components as well.

To correctly evaluate an expression, we need to know the ways in which
its components can be rearranged without changing the eventual evaluation
of the expression. The properties that govern these rearrangements include
associativity, commutativity, and distributivity. We include transitivity in this
section, too, even though it covers a rather different area than do the others.”

A.4.1 Associativity

The associative property covers groupings across binary operators (such as
subtraction in arithmetic and intersection in sets).

Definition 74: Associativity

Assume that A is a binary operator that can be applied to values a,
b, and c¢. The operator A is associative if (aAb)Ac = a/A(bAc) for all
acceptable values a, b, and c.

9Tt also ends in “tivity”; for us, that’s reason enough to put it here!
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The symbol A in Definition 74 (and the geometric shapes used in the upcoming
definitions in this subsection) represents any acceptable binary operator, not a
specific one. More formally, associativity is known as the associative property
and the expression is known as the associative law.

Not all operators are associative, as Example 204 shows.

Example 204:

Addition over integers is an associative binary operator: (94 13) +5 =
9+ (13+45)

Union over sets is also associative: GU(HUI) = (GUH)UI
Subtraction over integers is not associative: (2 —3) —4 # 2 — (3 —4).

Be aware that you cannot select just any three values to show that an
operator is associative. Consider (0—0)—0 = 0—(0—0). This is certainly true,
but that relationship is not generally true. Thus, subtraction over integers is
not associative.

A.4.2 Commutativity

Commutativity covers positioning of operands around binary operators.

Definition 75: Commutativity

Assume that bq is a binary operator that can be applied to values d and
e. The operator > is commutative if d <t e = e < d for all acceptable
values d and e.

Example 205:

Multiplication over integers is commutative: 8 x5 =5 % 8
Intersection over sets is, too: JN K =KnNJ
Set difference is not commutative: L — M # M — L
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A.4.3 Distributivity

Unlike associativity and commutativity, distributivity requires two distinct
operators.

Definition 76: Distributivity

Assume that O and < are binary operators that can be applied to values
x, y, and z. O is distributive over < if both of these conditions hold:
(a) z0(y<2) = (x0y) < (z02) (O is left distributive over <), and
(b) (yC2)0z = (youx) < (202) (O is right distributive over <),
for all acceptable values x, y and z.

Notice that the difference between (a) and (b) in Definition 76 is due to the
commutativity of the operator represented by O. So long as O is commuta-
tive over the values, there is no behavioral distinction between left and right
distributivity.

Example 206:

With integers, multiplication is distributive over addition, because, for
example, 4% (74+9) = (4% 7)+ (4%9) and (7T+9) x4 = (7T*4) + (9 4)
(either way, 64 = 64).

However, addition is not distributive over multiplication: 3 + (5 % 6) #
(3+5)*(34+6) (33 #T72).

A.4.4 Transitivity

As mentioned at the top of this section, transitivity does not fit well with the
other properties. It is still important in discrete structures, and even though
it should be known to you already, to be complete we should mention it in
this appendix somewhere. This section is as good a place as any to cover it.
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Definition 77: Transitivity

A binary relationship denoted by a relational operator ® is transitive if,
whenever a © b and b © ¢ are both true, then a © c is also true.

Binary relational operators are those that compare two values. For in-
stance, in mathematics ‘<’ is used to indicate that a number n is less than
another number m, as in n < m. If so, the operator evaluates to true; other-
wise, false. As it happens, ‘<’ is transitive, as demonstrated by Example 207
and detailed later on in Table 25.

Example 207:

(a) —9 < —3 and —3 < 5. By transitivity of <, we know that —9 < 5.

(b) (3+5) = 8 and 8 = 23. Because = is transitive, we know that
(3+5) =23

Example 208:

Consider the game Rock-Paper-Scissors.'? Paper beats rock and rock
beats scissors. If the relationship “beats” were transitive, then paper
would beat scissors, but of course it does not. Thus, the “beats” operator
is not transitive in the context of Rock, Paper, Scissors.

A.5 Properties of Inequalitites

Many people are fuzzy on what an “inequality” is, which makes the concept
a good place to start. An inequality is a comparison between two values that
can be true when the values are not equal. Thus, the relational operators #,
<, and > are all unquestionably inequalities. The operators < and > are also
considered to be inequalities, even though 4 < 4 is true (that is, even though

10See http://en.wikipedia.org/wiki/Rock-paper-scissors for the rules.
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these operators can also be true in an equality situation, we consider them
to be inequalities because they can be true when the operands differ, as in
4 < 5).

Tables 23, 24, and 25 detail several properties of inequalities that you
should know.

Table 23: Inequality Properties of Addition and Subtraction

For real numbers a, b, and c:

If Then
a<b a+c<b+c
a<b a+c<b+c
a>b a+c>b+c
a>b a+c>b+c

a#b a+c#b+c

5

A~ N T
o o

@)

Note: In all of these, addition can be replaced by subtraction.

Table 24: Inequality Properties of Multiplication and Division

For real numbers a, b, and ¢, when ¢ # 0 and ...

...when c is positive: ...when c is negative:
If Then If Then
(a) |a<b ac<bc (f) |a<b ac>be
(b) |a<b ac<bc (g) |a<b ac>bc
(c) |a>b ac>bc (h) | a>b ac<be
(d) |a>b ac>bc (i) |a>b ac<bc
(e) | a#b ac+#be (G) |a#b ac#bc

Note: In all of these, multiplication can be replaced by division.
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Table 25: Inequality Properties of Transitivity

For real numbers a, b, and c:

If Then If Then
(a) la<bandb<c a<c () |la>bandb>c a>c
(b) |la<bandb<c¢ a<c (f) |la>bandb>c a>c
(¢c) Jla<bandb<c a<c (g) |a>band b>c a>c
(d) [a<bandb<c a<c (h) [a>bandb>c a>c

Transitivity, in the context of relations, is covered in Chapter 8.

Example 209:

Let a =5,b =5, and ¢ = 8. a < b is true (5 is less than or equal to
5). b < cis also true (5 < 8). Because we know a < b and b < ¢, by
Table 25(d) we may conclude that a < ¢ (5 < 8). Note that although
we can also say that 5 < 8 is true, stating that 5 < 8 is more accurate,
because it correctly shows the impossibility of a = ¢ being true when
a<bandb<ec.

Example 210:

Problem: Demonstrate that 2m > p when 6n > p and m > 3n, where all
variables are integers.

Solution: By Table 24(c), we can multiply both sides of m > 3n by 2
to produce 2m > 6n. Table 25(g) allows us to conclude that 2m > p
because 2m > 6n and 6n > p.
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A.6 Summation and Product Notations

Expressing lengthy sums (such as 1 +2+3+4+ 546 + 7+ 8) requires a lot
of writing, or some sort of abbreviation technique (perhaps 1+ 2+ ...+ 8).
Such an abbreviation could be misinterpreted. In this case, is 1 +2+4...4+8
representing 1 +2+3+4+5+6+7+8 or 1 +2+ 4+ 8 (the sum of the
first four positive powers of 2)7 To help avoid confusion, mathematicians use
summation and product notations.

A.6.1 Summation Notation

Summation notation provides an unambiguous way to express the idea that a
long sequence of terms that follow a computational pattern should be added
together. Here is an example:

3
> 2 ( ITEX: \sum\limits_{i=0}"{3} 2~{i}) !!
1=0

This example expresses the sum 1 + 2 + 4 + 8. Here’s how: The variable
i takes on integer values, starting with 0 and ending with 3. For each of those
four integers, we replace the i in 2° with the integer and add together the
results. Thus:

Example 211:

The expression Z?:o 2% expands to 20 + 2! 4+ 22 + 23, which is equal to
1+2+448=15.

3
Each part of > 2' has a name:
i=0

o ¥ (BTEX: \Sigma, for a stand-alone version) is the Greek letter (capital)
sigma. (The lower case sigma, o ( IWTEX: \sigma), is used elsewhere in
mathematics, but not to represent summation.)

e 1 is the index of summation, or just index for short.

"The \limits command tells BTEX to format the limits above and below the sigma.
Discarding it produces a more compact version (Z?:o 21), useful for in-line expressions.
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e ( is the lower limit.
e 3 is the upper limit.
o 20 (MTEX: 27{i}) is the sequence.

A.6.2 Product Notation

Closely related to summation notation is product notation, which is identical
in appearance except for a different Greek letter, IT ( IATEX: \Pi), the capital
version of the symbol 7 ( BTEX: \pi) that represents the ratio of a circle’s
circumference to its diameter.

Here’s the same example as above using product instead of summation
notation:

3
112 ( WTEX: \prod\limits_{i=0}"{3} 2°{i})
1=0

And, of course, the terms from the sequence are multiplied instead of added.

Example 212:

Changing ¥ to IT in Example 211: [[3_, 2" = 20.21.22.23 = 1.2.4.8 = 64.
( A TEX: \cdot produces the multiplication dot.)

A.6.3 Interpreting Sequences within Sum and Product
Notation

Whether using summation or product notation, be careful with the formatting
of the sequence, as Example 213 shows.

Example 213:

The summation expression Y2, %4—2‘ is interpreted as (222:1 %) +i, rather
than as 22:1(% + ). In most cases, the evaluation of the two versions is
likely to be different. Here, ( 2, %)—i—i = (% + %) +i = 6+ (the trailing
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i is out of the scope of the summation, and so remains untouched), while
S2G 40 =(4+1)+(4+2)=5+4=9.

A.6.4 Nesting Summation and Product Notations

Can the sequence of a summation include another summation, or even a prod-
uct? Certainly!

The key to evaluating these nested notations is to work from the inside to
the outside. That is, expand the inner-most summation or product first, then
deal with the next inner-most, etc. Example 214 demonstrates.

Example 214:

5 2
Problem: Evaluate Y > (2a + b).
a=1b=0
Solution: Here, Y7_(2a + b) is the inner-most summation. Don’t worry
about the a in the sequence; it will be dealt with when we address the
outer summation.

é:(Qa—l—b):(2a+0)+(2a+1)+(2a+2):6a+3

o

We have simplified the original nested summation to the single summa-
tion 3-2_, (6a + 3), which we already know how to evaluate:

25)(6a+3) =(6-14+3)+(6-2+3)+(6:3+3)+(6:4+3)+ (6-5+3)

a=1
=94+15+21+27+ 33
=105

Thus, >°_, 32 (2a + b) = 105.

An observation on Example 214: We can simplify >-°_, (6a+3) a bit before
starting its evaluation. Doing so will save us some operations. Notice that
6a + 3 = 3(2a + 1). Because we are doing a summation, we can multiply the
result of the summation by three instead of multiplying each sequence term
by three. (You should recognize this as an application of distributivity; see
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section A.4. That is, 32, (6a +3) = 322, 3(2a + 1) = 3 (22:1(2a + 1)))
You can simplify the summation even further by turning the “41” into a “+45”
and by pulling out the “2”, but while these steps will simplify the summation,
it makes the expression as a whole a bit of a mess. Try it and see for yourself!

To conclude this subsection, Example 215 examines the connection be-
tween nested summations and nested FOR loops in programming languages.

Example 215:

5 2
Problem: Write nested pseudocode FOR loops that computes > > (2a+
a=1b=0
b).

Solution: Each Y represents an iteration operation over the index of
summation, starting with the lower limit and stopping after the upper
limit is considered. The parallels between index-controlled loops (such as
FOR loops) and summation notation are numerous, making FOR loops a
natural stand-in for summation in a program. Apart from the summation-
to-FOR-loop translation, we only need a variable to hold the sum being
computed.

sum <- O
for a from 1 through 5
for b from O through 2
sum <- sum + 2a + b
output sum

In Example 214, we considered the summations essentially independently,
working inside-out. Computers do not treat the instructions representing
nested FOR, loops that way, but they could (especially if certain code opti-
mizations are applied). We could manually apply the same inside-out process
to our code example in Example 215 to eliminate the inner loop:

sum <- 0;

for a from 1 through 5
sum <- sum + 6a + 3

output sum
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6  <— quotient (q)
divisor (s) — 4| 27 <—dividend (n)
24

3  <—remainder (r)

Figure A.5: Long Division with Component Names

A.7 Integer Division

Remember learning long division of integers in grade school? All of the num-
bers were integers, and most of the parts had hard-to-remember names. Fig-
ure A.5 reminds us of the parts and their names.

To save space, we can summarize the division in Figure A.5 using the
representation 27/4 = 613, where the ‘t’ means ‘remainder’'? In discrete
structures, the results (the quotient and the remainder) are both of use, but
the remainder is of particular interest.

A.7.1 Modulo and Integer Division Operators

The modulo operator, represented by %, the percent sign ( KTEX: \%), is a
binary operator that takes the dividend and divisor and produces the remain-
der of the integer division.'® The integer division operator, represented by \,
the back slash ( XTEX: \backslash), takes the same operands but produces
the quotient. Finally, the divides operator, represented by | ( BTEX: \mid or
|) also accepts the same operands, but in reverse order and returns a boolean
result: True when the division results in no remainder, false otherwise. The
reversing of the operands is important to remember; that is, 16 % 2 = 0
corresponds to 2 | 16, and we would read it aloud as “2 divides 16.”

Example 216:

Some parallel examples of the modulo, integer division, and divides op-
erators:'4

12 If you want to be old-school, you can use the + symbol to represent division ( ATEX:
\div). It’s called an obelus and is not, to our knowledge, a part of a Borg ship. Yet.

13 Sometimes people refer to the modulo operator as the ‘modulus’ operator. ‘Modulus’
can mean several things, but none of them is an alternate name for modulo.
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(a) 27T%4=3 (f) 27\4=6 (k) 4| 27 = False
(b)y 4%4 =0 (g) 4\4 =1 () 41]4 =True
(c) 4%271=4 (h) 4\27=0 (m) 27 | 4 =False
(d) 0%5 =0 (i) 0\5 =0 (n) 5|0 =True
(e) 3%0 = Undef. () 3\0 = Undef. (o) 0] 3 = Undef

If any of the modulo examples from Example 216 are confusing, (c) is
probably the one. Think of it this way: In 27 %4, we ask ourselves how many
instances of the divisor (4) we can subtract from the dividend (27) before
what’s left (the remainder) is less than the divisor. To evaluate 4 % 27, we
ask the same question. Because 4 < 27, we cannot subtract any instances of
27 from 4 without the result being less than 27, and so the remainder is the
original dividend: 4.

A word of caution: When writing “/”, “\”, and “|” by hand, be careful to
indicate the slope (or the lack thereof!) clearly, so that the reader (often the
person grading your answer) understands which operator you are using. The
division symbols are yet another reason to use a scientific document processing
system such as INTEX to format your work whenever possible.

A.7.2 Congruences

Two integers are congruent if they produce the same remainder when divided
by a given value. The following definition has the details.

Definition 78: Congruent

If b,r € Z and m € Z*, then b and r are congruent modulo m (written
= r (mod m)) if and only if b % m = r % m (or, if and only if m | (b—7)).
( ITEX: \equiv produces ‘=’)

Some terminology to go with Definition 78: b is the base, r is the remainder
or residue, and m is the modulus.'

MWhy no examples with negative dividends or divisors? Because they really complicate
the story, that’s why! There’s more than one way to handle negatives with modulo, and
negatives don’t often appear with modulo in computer science applications. And before
you ask about floating point values: This is a discrete structures book! (That’s the answer
whenever we don’t feel like dealing with real numbers, for any reason. Yes, it’s very handy.)

5 And here is one of those uses of ‘modulus’ now!
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Example 217:

Problem: Are 35 and 108 congruent modulo 177

Solution: As Definition 78 states, 35 = 108 (mod 17)) if 17| (35 — 108)).
35— 108 = —73, and 17| — 73 is false. (73 is not a multiple of 17, so 17
cannot divide —73 evenly.) Thus, 35 and 108 are not congruent modulo
17 (which can be written: 35 # 108 (mod 17)). ( XTEX: \not\equiv)

If the —73 from Example 217 bothers you, you can switch the base and
the residue: 35 = 108 (mod 17) is equivalent to 108 = 35 (mod 17).

Congruences are useful in many advanced areas of computer science, in-
cluding hash functions and cryptography. Cryptography is hard, though;
telling time is comparatively easy, and congruences apply to time, too, as
Example 218 shows.

Example 218:

Problem: It is now 7:50. What time will it be in 155 minutes?

Solution: As we well know, there are 60 minutes in an hour. An in-
teger division (155/60 = 21 35) reveals that 155 minutes is the same as 2
hours and 35 minutes. As a congruence, 155 = 35 (mod 60). Adding 2:35
to 7:50 by adding hours to hours and minutes to minutes gives a time of
9:85, which still needs some work because 85 > 60. Congruences to the
rescue: 85 = 25 (mod 60). Replacing the 85 in 9:85 with the residue (25)
and incrementing the hours by one produces the answer: In 155 minutes,
it will be 10:25.

A.8 Evens and Odds!'®

When we introduce proof techniques in Chapters 4 and 5, we will start with
simple examples that frequently involve basic properties of integers. Two of
those properties are the ideas of ‘even’ and ‘odd’ numbers.

18You're thinking of skipping this section, aren’t you? It’s only a page long! Read it!
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Definition 79: Even

An integer n is even if and only if there exists an integer k such that
n = 2k.

There are other equally valid ways of defining even. For example, n is
even if and only if 2 | n. Another: n is even if and only if n%2 = 0. A
third: n is even if and only if n = 0 (mod 2). Why, then, did we choose the
one that needs a second varible to be defined? Because, for many of our proof
examples, that form is the most useful.

Please note: Regardless of the way the concept of evenness is expressed,
the integer zero is an even number. Zero is a special case when we are dividing
by integers, and zero is a special case when we consider positive and negative
values, but zero is not a special case with evens and odds: Zero is even.

With ‘even’ defined, we can move on to ‘odd’:

Definition 80: Odd

An integer n is odd if and only if there exists an integer k such that
n =2k + 1.

All of the other ways we gave to define ‘even’ can be adjusted to define
‘odd’: n is odd if and only if 2 t n ( WTEX: \nmid), or if and only if n %2 =1,
or if and only if n = 1(mod 2). We can even adjust the ‘k’ definition by
adding (or subtracting) any odd integer from 2k. For example, n = 2k — 1001
is just as valid as n = 2k+1. The advantage of the “+1” form is that applying
functions, such as squaring, to 2k + 1 is usually much easier than applying
them to an expression such as 2k — 1001.

Finally, notice that we can partition (see Section 6.3.5) all integers into
one or the other of these two subsets. That is, no integer is both even and
odd, and no integer (not even zero!) is neither even nor odd.

A.9 Logarithms and Exponents

In the days before reliable calculating devices, logarithms were used to simplify
otherwise tedious-to-evaluate expressions. We use them today in computer
science primarily for algorithm analysis. For example, consider the binary
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search algorithm. The amount of work a computer performs in carrying out
that algorithm is described in terms of a logarithm of the quantity of data
being searched.

The name “logarithm” frightens nearly as many students as does the word
“proof”. You may find them less imposing if you know that they are just
exponents written in a different way. When working with integers, we know
that a sequence of products of the same value can be more tersely expressed
using an exponent. For example, 3-3-3-3 = 3* = 81. In the expression
3* = 81, 3 is the base, 81 is the power, and 4 is the logarithm (or exponent).
Definition 81 gives another way to structure exponential expressions.

Definition 81: BLP Relationship

Assume that b, [, and p are postive real numbers. The Base-Logarithm—
Power (‘BLP’)!" relationship states:

bl = p if and only if log,p =1 ( BTEX: \log_2)

where b is the base, [ is the logarithm, and p is the power.

Example 219:

Problem: Evaluate: log,64.

Solution: Let’s name the result of the evaluation of this expression x.
That is, log,64 = 2. By BLP (Definition 81), we can rewrite log,64 = x
as 4% = 64. Because 64 = 43, x = 3, and so log,64 = 3.

17 The right-hand side of the relationship (log, p = I) is sometimes referred to as the
logarithmic function, but if this entire biconditional relationship has a formal name, no
reference I consulted uses it. Such a key idea deserves some sort of name, so we introduce
Base-Logarithm—Power, or ‘BLP’ for short (and suggest the pronounciation “blip”).
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Example 220:

Problem: Evaluate: log,x when x > 0.

Solution: At first glance, you might think that the problem is too vaguely
specified for an evaluation to be performed. However, by applying BLP,
we can transform log,x = y into ¥ = x. As z is just a short-cut way of
writing 2!, we see that y = 1, and so log,x = 1. This is a useful identity
to remember.

There are many exponent and logarithm identities that are good to learn.
Table 26 summarizes some of the laws that we think are worth knowing.

Table 26: Laws of Exponents and Logarithms

Laws of Exponents Laws of Logarithms
a w*tY = ww? (f) log, (x¥) = ylog,x
b (W)Y = w™ (8) | logy(zy) = logyz + logyy

o~ o~ o~~~ —
(@)
—_— =

viw® = (vw)® (h) | log,(}) = logyx — logyy
d %Z = w* Y (i) blog? = g
9| Z=qy ()| logw=lme

Example 221:

log: 4 + log= 8
Problem: Evaluate w.

log, 5

Solution: We start by making the log bases the same, and simplify from
there.
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logs 4 +logs 8  logs 4 + logs 8
085° 1+ 0858 _ 0B59F 9858  Tuple 26, Line j, with b= 5
Tog, 5 Togs 5
(=)
logs 4 + logs 8
_ 085+ 085°  pogult of Ex. 220, and 1/(1/y) = y
logs 2
1 2
_ L 5 Table 26, Line g
logs 2
= logy 32 Table 26, Line j
= log, 2° It’s good to know powers of 2!
= 5log, 2 Table 26, Line f
=5 Example 220 again

To help put logarithic functions in context, Figure A.6 shows a plot of
three functions: f(n) =1 (a constant function), f(n) = logyn (a logarithmic
function commonly used in computer science), and f(n) = n (a linear func-
tion), with added axis lines for n = 1 and n = 2. There are several items of
interest in this plot. First, observe how slowly log, n grows; it is much closer
to f(n) = 1 than to f(n) = n as n becomes larger. Second, observe that
logon =1 when n = 2 (not a surprise, now that we know log, b = 1). Third,
logy 1 = 0 (also not a surprise, as b° = 1 implies that logy 1 = 0). Fourth,
when n < 1, logyn < 0. In computer science, n usually represents the size of
a problem in terms of the size of the data structure (that is, the quantity of
data items stored). Thus, values of n below 1 aren’t often of interest.

A.10 Working with Quadratic Equations

We have occasion to factor quadratic equations in this book. Not many oc-
casions, but we do have them. One reason to factor them is to find their
roots.

Definition 82: Quadratic

A quadratic is an polynomial expression in one variable of the form ax? +
bx + ¢, where a, b, and c are real constants with a # 0.

Setting a quadratic equal to a value creates a quadratic equation.
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Figure A.6: A linear-axes plot of f(n) =1, f(n) =logyn, and f(n) =n.

A.10.1 Factoring Quadratics

First, two definitions.

Definition 83: Perfect Square

An integer n is a perfect square if the product of some integer m with
itself equals n. Alternatively, n is a perfect square if its square root is an
integer.

Definition 84: Quadratic Formula

Given a quadratic equation axz? + bz + ¢ = 0, the value(s) of x that make
this equation true (known as the root(s) of the equation) are given by
the evaluation of the quadratic formula: x = =tEv/b>—dac W
within the square root, b*> — 4ac, is the discriminant.

. The expression

There are several techniques used to factor quadratic polynomials. As this
is a discrete structures book, we will limit ourselves to quadratics that can be
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factored using only integers. How do you know? If a, b, and ¢ are integers
and the evaluation of b? — 4ac (known as the discriminant; see Definition 84)
is a perfect square, then the roots will be integers.

Because we are sticking with integers, factoring quadratics will be com-

paratively easy to accomplish. Here are three techniques:

(1)

‘Guess and Check’. Despite the inelegant name, this method does have a
formal origin: Vieta’s formulas.'® Easiest to use when a = 1, in ‘guess and
check’ we look for values y and z such that 22 + bz +c = (z+y)(z+2) =
22+ (y+2)z+yz. Note that y+2z = band y-z = c. To apply this method,
we ‘guess’ a pair of factors of ¢, and ‘check’ that they satisfy those two
equations.

The AC Method. This method, which is a generalization of ‘guess and
check’; is likely to be slower when applied by hand, but you may find
it to be easier to use when a # 1. The idea comes from this equation:
ar’ +br+c= a2$2+3b$+‘w = (ax+d)a(ax+e), where d and e are factors of the
product a - ¢ such that d-e = a- ¢, and their sum equals b. As with ‘guess
and check’, the hard part is finding the factors d and e; after that, just
substitute the values and simplify. The denominator a will divide away

when the discriminant is a perfect square.

Apply the quadratic formula. The factors of ax? + bx + ¢ are a, x —
=btvbi—dac W, and g — =b=yb—dac W. That is,

ar’+br+c=a (:1: — 74’*‘/21;27%) (a; — 771’7‘/2227%).

When the discriminant is a perfect square, the square roots will evalu-
ate to integers. This method is as general as they come, but it does rely
on your memory of the quadratic formula and your ability to perform a
fair amount of math by hand without making any mistakes.

Example 222:

Problem: Factor 22 — x — 6 using ‘guess and check’.

Solution: To match the additions in the form az? + bx + ¢, we need

18

wikipedia.org/wiki/Vieta’s_formulas
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b and c¢ to be negative; specifically, a = 1, b = —1, and ¢ = —6. In
‘guess and check’, we need to find factors of —6. Ignoring the negation
for a moment, the factors of 6 are 1,2,3, and 6. We need a pair of these
four factors whose product is 6. The only two pairs that work are 1 &
6 and 2 & 3. To get yz = —6 from these factors, there are four possi-
bilities for y and z: —1 & 6, 1 & —6, —2 & 3, and 2 & —3. To satisfy
the other equation (y + z = —1), only the pair 2 & —3 works. Thus,
22—z —6=(x+2)(z—3).

Notice that the pairings of the factors are the smallest with the largest,
the second-smallest with the second-largest, etc. You do not need to consider
all possible pairings of the factors, because the products of the other pairings
won’t equal c.

Example 223:

Problem: Factor 622 4+ 13z — 5 using the AC method.

Solution: Here, a = 6, b = 13, and ¢ = —5. In the AC method, we
want to find factors of ac named d and e such that w, subject
tode = acand d+e = b. ac = —30, and 30’s factors are 1,2, 3,5, 6, 10, 15,
and 30. Possible d & e pairs are 1 & 30, 2 & 15, 3 & 10, and 5 & 6, for a
total of 8 pairs when negatives are added (remember, we need the product

to be —30). Only the pair —2 & 15 sum to b. Substituting and simplifying:

(az+d)(azte) __ (62—2)(6z+15)
a 6
_ (2)(3x71§3)(2x+5)
= (3z —1)(2x +5) Divide away the 6’s

Thus, 622 + 13z — 5 = (3z — 1)(2x + 5).

Substitution

Factor the binomials

Example 224:

Problem: Factoring 622 4 13z — 5 using the AC method was a pain, with
all of those factors of 30!
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Solution: You can always use the quadratic formula:

ar’ +br+c=a (a: — 7_“@) (sc — 7_1’_‘/2@)

26 26
_ —13+/289
L 12

0(e-1) (- )
o322 (+#)

=3z —1)(2x +5)

After trading the pain of factors of 30 for the tag-team pains of square
roots and fractions, once again 6z + 13z — 5 = (3z — 1)(2z + 5).

6 (x _ oBH/1B-(6-5) ([ -13- 132—(4-6_5))

I
o

—13-1/289
b= 2

A.10.2 Roots of Quadratic Equations

As mentioned in Definition 84, the value(s) for = that cause az? + bz + ¢ =0
to be true are known as the root(s) of the quadratic equation.

Having refreshed our memory of how to factor quadratics, finding the
root(s) of (a.k.a. solving) a quadratic equation is easy. Each quadratic factors
to two binomials (expressions that are the sum of two terms; e.g., ax 4+ d). If
either evaluates to zero, the evalation of the entire quadratic must be zero. It
follows that the roots of the quadratic equation az?+bx+c = (hx+i)(jo+k) =
0 are simply r = —% and ro = —%. This shows that a quadratic equation has
at most two unique roots, a situation that will occur when the discriminant
is positive. A single root (11 = r2) exists when the discriminant evaluates to
zero, and no (real) roots exist otherwise.

Example 225:

Problem: Solve (that is, determine the roots of) 6z% + 13z — 5.

Solution: In Examples 223 and 224, we factored this quadratic and
learned that 622 +13z—5 = (3x—1)(22+5). To make (3x—1)(2z+5) = 0,
we need 3x — 1 = 0 or 2z + 5 = 0. That is, either x = % or r = —%.

Thus, the roots of 622 + 13z — 5 =0 are r; = % and ro = g .
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A.11 Positional Number Systems

Number systems are not core discrete mathematics topics. However, values
drawn from them are often used as the subject of counting problems in discrete
math, and as you will see such problems in this book, the basics of such systems
are worth providing.

Fundamentally, a number system is any representation used to express
quantities. Using pebbles to represent heads of cabbage is a number system,
although not one that scales well to corporate farming. The decimal system
we use daily is also an example of a number system, but more specifically a
positional number system. Positional systems are useful because they have
symbols that individually represent small quantities, but those same symbols
can also represent much larger quantities if the symbols are grouped and
ordered.

Definition 85: Positional System

A positional (number) system represents quantities using a combination of
symbols (known as digits or glyphs) and relative locations of those symbols
to represent quantities abstractly. Specifically, a positional system of base
b employs a set of b digits. A sequence of these digits d,d,_1...d1dy
represents an integer value of base b equivalent to the decimal quantity

dp " +dp1- 0" dy b+ do - B0 = Y dib
=0

By changing the base, we can create an infinite number of positional num-
ber systems. Happily, only a few of those are commonly encoutered in com-
puter science.

A.11.1 Decimal (Base 10)

Decimal is a good system with which to start, because we are already quite
familiar with it. We all learned, a long time ago, that there are ten digits
available in decimal: ‘0°,°1°,2,°3’,4’,*5°,6’,*7",‘8’, and ‘9. As Definition 85
says, the base of the system matches the number of available digits. Thus, we
know decimal’s base is ten. Each digit position in a decimal number represents

¥Yeah, OK, this example’s roots aren’t integers. But they are rational!
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a power of ten, and the digit in that position tells us how many of that power
we include in the representation of the value.

Example 226:

681 is decimal is a representation of the sum of 600, 80, and 1. That is,
681 = 6-102+8-10" 4 1-10°. Beats the heck out of carrying around 681
pebbles!

A.11.2 Binary (Base 2)

Modern computers store information in primary storage as sequences of elec-
trical charges — ‘power is present’ and ‘no power is present’ Using this two-
valued system as the basis for storing data naturally led to the use of the
binary positional number system.

As the name ‘binary’ suggests, the base is two. As the necessary quantity
of digits is less than the quantity used by decimal, rather than create two new
gylphs, binary simply borrows the first two glyphs from decimal: ‘0’ and ‘1.
(A single binary digit is called a bit 2°.) To distinguish binary values from
decimal values, we usually append a subscript of ‘2’ at the end of a binary
value, as in ‘10110115 (You can append a ‘10’ to the end of decimal values if
you wish, but in practice un-subscripted values are assumed to be base 10.)

Because binary, like decimal, is a positional system, we can determine the
quantity being represented using the summation provided in Definition 85, as
Example 227 demonstrates.

Example 227:

Problem: Determine the decimal quantity represented by the binary value
10110115.

Solution: Each position of a binary value represents a power of 2, starting
with 2° on the right and increasing the exponent by one for each position
we move to the left. Writing the position values beneath the digits is
sometimes helpful:

20 The name bit is just a concatenation of the letters ‘bi’ from ‘binary’ and ‘t’ from ‘digit’.
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1 0 1 1 0 1 1
64 32 16 8 4 2 1
2% @ @) @ @ @) @)
From this, we can see how to form the decimal equivalent: We need
a 64 (1-25), we don’t include a 32 (0 - 2%), etc. Summing the powers of
two that we keep (64 + 16 + 8 + 2+ 1) gives our answer: 911( represents
the same value as does 10110115.

When converting from binary to decimal, we employed the summation
approach, which has a foundation of multiplication by 2. To convert from
decimal to binary, it stands to reason that division can be used.

To convert from decimal to binary, we divide the decimal value by 2 and
record the remainder. We next divide the quotient of the previous division
by 2, and again save the remainder. This process of repeated divisions con-
tinues until the quotient becomes zero. The sequence of remainders, ordered
from most-recently to least-recently discovered, are the digits of the binary
representation.

Example 228:

Problem: Determine the binary representation of the decimal value 103.

Solution: As we are converting to binary, we perform divisions by 2.
Here, we ‘stack’ the divisions to save space:

0 R 1
2°) 1 R 1
27) 3 R 0
2°) 6 R 0
2°) 1 2 R 1
27) 2 5 R 1
27) 5 1 R 1
27) 1 0 3

With the stacking, we read the remainders top-down to get the answer:
10319 = 11001115.
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Actually, this same process works to convert decimal to any other base with
one small change: Take the description above and replace each occurrence of
‘2> by ‘base b. Algorithm 1 details the process. Note that a stack is used to
hold the remainders and produce them in the proper order. If you do not know
how a stack operates, you can replace it with an array. Store the remainders
starting at index 0, and output them in reverse order.

Algorithm 26: Decimal to Base b Conversion

dividend <- decimal value

divisor <- base b

initialize stack

loop
quotient <- dividend \ divisor
remainder <- dividend % divisor
push remainder onto stack
dividend <- quotient
if dividend is 0, leave loop

end loop

pop stack content to output

If you need to do a base conversion manually, the hardest part is remem-
bering the order in which to write the remainders. Remembering what the
stack does for us in Algorithm 1 is one good way to get it right. Another is to
look at Example 228 and think about continuing the division process longer
than is necessary. Doing so will create a bunch of zeros. Only the left side of
the sequence of remainders can have zeros added to it without changing the
result. That is, 1o = 00012 # 10005.

The really annoying part of the division algorithm is the need to do a
lot of divisions. There is an alternative approach that works well for small
decimal-to-binary conversions and can be done in your head a bit more easily
than several long divisions.

Example 229:

Problem: Determine the binary representation of the decimal value 103
again ... this time with only the powers of your mind!
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Solution: What we need is the correct collection of powers of 2 that
sum to 103. Start by thinking of the largest power of 2 that is less than
or equal to 103: 64. Write down a ‘1’, and compute 103 — 64: 39. Now
consider all of the powers of 2 from the next smaller power of 2 (32)
down to and including 0, in decreasing order. For each one, if we need it
to reach the remaining amount, write down a ‘1’ and subtract it to get
the new remaining amount (write down a ‘0’ otherwise). Stop when the
remaining amount is zero. In this example, we need 32 to get to 39; we
write down a ‘1’ and compute the difference 39 — 32 = 7. We don’t need
16 or 8 (write down two ‘0’s). At this point, it is likely obvious that we
need all of the rest (4,2, and 1) to reach 7, and so we end with three more
‘1’s. Our final collection is: 1100111.

A.11.3 Octal (Base 8)

Binary may be what computers like to use, but most human beings would
rather not have to work with long strings of zeros and ones. A compromise
positional number system is octal (base 8). This is a compromise because the
representations are shorter (easier for people to remember) but also easy to
convert back and forth to binary. As with binary, we can use a subset of the
decimal digits for octal representations, specifically the digits 0 through 7. As
octal is also a positional number system, each digit position is worth a power
of 8. A difference from binary is that we have the ability to have several of
any given power of 8 included in our sum; that is, 423 means that we have 4
8s plus 2 1s. In binary, we could only accept a power of two or ignore it.
The decimal-to-octal and octal-to-decimal conversions can be done as we
did them for binary (repeated multiplications or divisions by 8), or we can do
them in two steps: decimal-to-binary-to-octal and octal-to-binary-to-decimal.

Example 230:

Problem: Convert 20655 to decimal.
Solution: We will do this in two ways: Through binary, and directly.

Option #1: Octal-to-binary-to-decimal. We start with an observation:
A three-digit binary number has possible decimal values ranging from
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0 (000) through 7 (111), exactly the range of the octal digits. A con-
sequence is that we can convert octal to binary by simply expanding
each octal digit to its three-digit binary representation. In this example,
20658 — (010)(000)(110)(101) — 100001101015 (after dropping the ex-
traneous leading 0). Having seen Example 227, we know what to do next:
1024 + 324+ 16+ 4+ 1 = 10771.

Option #2: Octal-to-decimal. To accomplish this, we just apply the
sum from Definition 85: 283 +6- 8" +5-8° = 1024 + 48 + 5 = 1077.

Example 231:

Problem: Determine the octal representation of the decimal value 103.
Solution: We will also do this example in two ways.

Option #1: Decimal-to-binary-to-octal. We have already accomplished
the first half of this in Example 228: 10319 = 11001115. To convert from
binary to octal, we can construct groups of three binary digits and con-
vert them to octal digits. Note that the grouping by threes must start on
the right and move left! That is, 11001115 — (1)(100)(111) — 147s.

Option #2: Decimal-to-octal. We can apply repeated divisions, as used
in Example 228:

=)
=ej=c=s|

1

8 7) 4

8§ ) 1 7
§ 7 1 0

Thus, 10319 = 147s (and also verifies the result of Option #1).

W N| —

A.11.4 Hexadecimal (Base 16)

We motivated octal by presenting it as a compromise between binary and
decimal. Hezxadecimal (‘hex’ for short) can be thought of in the same way.
The name ‘hexadecimal’ suggests its base: Together, ‘hex’ for six and ‘decimal’
for ten give 16 as the base, which, like base eight for octal, is a power of two.
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But we have a new problem: A base 16 system needs 16 digits, and we only
have the ten from decimal to work with. The solution is to use the first six
letters of the alphabet (‘A’ through ‘F’) to represent the values 10 through
15. Table 27 will be a handy reference until you become more familiar with
the system.

Table 27: Binary, Octal, Decimal, and Hex: 0 through 1519
Binary Octal Decimal Hex Binary Octal Decimal Hex
0000 0 0 0 1000 10 8 8
0001 1 1 1 1001 11 9 9
0010 2 2 2 1010 12 10 A
0011 3 3 3 1011 13 11 B
0100 4 4 4 1100 14 12 C
0101 5 5 5 1101 15 13 D
0110 6 6 6 1110 16 14 E
0111 7 7 7 1111 17 15 F

Hexadecimal is more commonly used than is octal for two main reasons.
First, because it has a base larger than 10, hex representations of values often
require fewer digits than do the octal or the decimal representations. Second,
a hex digit is representable with four binary digits, which is exactly half of a
byte.?! Thus, we can represent the content of a byte with no more than two
hex digits instead of up to three decimal or octal digits.

If you understand conversions between decimal, binary, and octal, you
understand them for hexadecimal; just remember to use base 16 instead of
base 8. The conversions between octal and hex are easily performed via binary.

Example 232:

Problem: Express 1352 in hexadecimal.

Solution: First, we convert the octal digits into three-digit binary values
to get the binary equivalent: 13525 — (001)(011)(101)(010) — 10111010102
To convert from binary to hex, we can group the bits by fours (as we did

2! Half a byte is called a nybble. Byte ...tiny bite ...nybble; get it? ‘Nibble’ is an
acceptable alternate spelling.
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by threes for octal). Again, we must group from right to left: 10111010102
(10)(1110)(1010) — 2EA 6.

A.11.5 Other Bases

As we hope is becoming clear from the preceding examinations of binary, octal,
and hexadecimal, any integer value greater than one can be used as the base
in a positional number system. Definition 85 can be used to convert any of
them to decimal, and the division technique of Example 228 can convert from
decimal to them.

Example 233:

Problem: Determine the decimal value of 413s.

Solution: By Definition 85: 4-5% +1-5! +3.5% =100 + 5 + 3 = 108;p.
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