Math Review Summary

CSc 245, Summer 2020

This is a summary of important math concepts from the math review appendix from Dr. McCann's book. For a more detailed review, please read the appendix (on the course webpage).

1 Fractions

Common Fraction Equalities

(a) $\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$	(b) $\frac{x}{z} - \frac{y}{z} = \frac{x-y}{z}$	(c) $\frac{x}{z}\frac{y}{z} = \frac{xy}{z^2}$	$(\mathbf{d})\frac{\frac{x}{z}}{\frac{y}{z}} = \frac{x}{y}$
(e) $\frac{x}{w} + \frac{y}{z} = \frac{xz+yw}{wz}$	(f) $\frac{x}{w} - \frac{y}{z} = \frac{xz - yw}{wz}$	(g) $\frac{x}{w}\frac{y}{z} = \frac{xy}{wz}$	$(h)\frac{\frac{x}{w}}{\frac{y}{z}} = \frac{xz}{wy}$

2 Rational Numbers

Rational Number: A value that can be expressed as the ratio of two integers

3 Set Basics

- <u>Set</u>: an unordered collection of unique objects $S = \{x_1, x_2, \ldots\}$
- <u>Notation</u>:
 - $-s \in S \ s$ is a member of S
 - \emptyset is the empty set $(S = \{\})$
 - { variables | constraints for membership } ("variables such that they satisfy the constraints for membership")
 - $-\mathcal{U}$ is the universal set (all objects that could possibly be in the set)
- Operators:
 - <u>Union</u>: $A \cup B$, all objects in A or B (or both)
 - **Intersection**: $A \cap B$, all objects in both A and B
 - **<u>Difference</u>**: A B, all objects in both A that are not also in B
 - Complement: \overline{A} , all objects in \mathcal{U} that are not in $A(\mathcal{U} A)$
 - **Cardinality**: |A|, the number of objects in A
- Venn Diagram:

- Notations of Sets of Numbers:
 - \mathbb{Z} : All integers {..., -2, -1, 0, 1, 2, ...}
 - $-\mathbb{Z}^+$: Positive integers $\{1, 2, 3, \ldots\}$
 - $-\mathbb{Z}^*$: Non-negative integers $\{0, 1, 2, 3, \ldots\}$
 - $-\mathbb{Z}^-$: Negative integers $\{\ldots, -3, -2, -1\}$
 - $-\mathbb{Z}^{even}$: Even integers $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
 - $-\mathbb{Z}^{odd}$: Odd integers {..., -3, -1, 1, 3, ...}
 - \mathbb{Q} : Rational numbers
 - $-\overline{\mathbb{Q}}$: Irrational numbers
 - $-\mathbb{R}$: all real numbers

4 Associative, Commutative, Distributive, and Transitive properties

- **Associative**: An operation \diamond is associative if $a \diamond (b \diamond c) = (a \diamond b) \diamond c$
- <u>Commutative</u>: An operation \diamond is commutative if $a \diamond b = b \diamond a$
- Distributive: Operations ◊ and □ are distributive if:
 a□(b ◊ c) = (a□b) ◊ (a□c) (□ is left-distributive over ◊) and
 (b ◊ c)□a = (b□a) ◊ (c□a) (□ is right-distributive over ◊)
- <u>Transitive</u>: An relationship \circ is transitive if whenever $a \circ b$ and $b \circ c$, then $a \circ c$ (e.g. a < b and b < c implies a < c).

5 Properties of Inequalities

- <u>Addition</u>: If a < b, then a + c < b + c. This holds for $\leq, >, \geq$.
- Multiplication (c > 0): If a < b, then ac < bc. This holds for $\leq, >, \geq$.
- Multiplication (c < 0): If a < b, then ac > bc. This holds for $\leq, >, \geq$ (the sign flips).
- Subtraction follows the rules of addition. Division follows the rules of multiplication.

6 Summation and Product Notations

- <u>Summation Notation</u>: In $\sum_{i=0}^{k} s(i)$, *i* is the *index*, i = 0 is the *lower limit*, *k* is the *upper limit*, and s(i) is the sequence we are summing.
- <u>Product Notation</u>: In $\prod_{i=0}^{k} s(i)$, everything is the same as summation, except we use π to indicate that we multiply the sequence.

7 Integer Division

- <u>Modulo</u> Denoted by % or mod , the modulus operator gives the remainder of an integer division. E.g. 10%4 = 2
- Congruency a is congruent to b modulo m (denoted $a \equiv b \pmod{m}$), if a % m = b % mor (a-b) % m = 0
- <u>Divides</u>: The "divides" operator, denoted a|b, returns True if b % a = 0 and False otherwise.

8 Evens and Odds

- <u>Even</u> An integer, n is even if there exists an integer k such that n = 2k (or 2|n, n % 2 = 0, $n \equiv 0 \mod 2$)
- <u>Odd</u> An integer, n is odd if there exists an integer k such that n = 2k + 1 (or $2 \nmid n$, n % 2 = 1, $n \equiv 1 \mod 2$)

9 Logarithms and Exponents

Laws of Exponents and Logarithms:

 $\begin{array}{ll} (a) \ w^{x+y} = w^x w^y & (b) \ (w^x)^y = w^{xy} & (c) \ v^x w^x = (vw)^x \\ (d) \ \frac{w^x}{w^y} = w^{x-y} & (e) \ \frac{v^x}{w^x} = (\frac{v}{w})^x & (f) \ \log_b(x^y) = y \log_b x \\ (g) \ \log_b(xy) = \log_b x + \log_b y & (h) \ \log_b(\frac{x}{y}) = \log_b x - \log_b y & (i) \ b^{\log_b x} = x \\ (j) \ \log_a x = \frac{\log_b x}{\log_b a} & (k) \ \text{If} \ b^y = x, \ \text{then} \ \log_b x = y \end{array}$

10 Quadratic Equations

- Quadratic Equation: Equation of the form $ax^2 + bx + c$ where $a \neq 0$
- Factoring Quadratics: $(fx + d)(gx + e) = (fg)x^2 + (gd + fe)x + de$
- Quadratic Formula: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

11 Number Systems

- Binary: Base 2, Digits 0,1 Decimal: Base 10, Digits 0-9
- Octal: Base 8, Digits 0-7 Hexadecimal: Base 16, Digits 0-9, A-F