Math Review Summary

CSc 245, Summer 2020

This is a summary of important math concepts from the math review appendix from Dr. McCann's book. For a more detailed review, please read the appendix (on the course webpage).

1 Fractions

Common Fraction Equalities

(a) $\frac{x}{z}+\frac{y}{z}=\frac{x+y}{z}$
(b) $\frac{x}{z}-\frac{y}{z}=\frac{x-y}{z}$
(c) $\frac{x}{z} \frac{y}{z}=\frac{x y}{z^{2}}$
(d) $\frac{\frac{x}{z}}{\frac{y}{z}}=\frac{x}{y}$
(e) $\frac{x}{w}+\frac{y}{z}=\frac{x z+y w}{w z}$
(f) $\frac{x}{w}-\frac{y}{z}=\frac{x z-y w}{w z}$
(g) $\frac{x}{w} \frac{y}{z}=\frac{x y}{w z}$
(h) $\frac{\frac{x}{w}}{\frac{y}{z}}=\frac{x z}{w y}$

2 Rational Numbers

Rational Number: A value that can be expressed as the ratio of two integers

3 Set Basics

- Set: an unordered collection of unique objects $S=\left\{x_{1}, x_{2}, \ldots\right\}$

- Notation:

$-s \in S s$ is a member of S

- \emptyset is the empty set $(S=\{ \})$
- \{ variables | constraints for membership \} ("variables such that they satisfy the constraints for membership")
$-\mathcal{U}$ is the universal set (all objects that could possibly be in the set)

- Operators:

- Union: $A \cup B$, all objects in A or B (or both)
- Intersection: $A \cap B$, all objects in both A and B
- Difference: $A-B$, all objects in both A that are not also in B
- Complement: \bar{A}, all objects in \mathcal{U} that are not in $A(\mathcal{U}-A)$
- Cardinality: $|A|$, the number of objects in A
- Venn Diagram:

- Notations of Sets of Numbers:
$-\mathbb{Z}:$ All integers $\{\ldots,-2,-1,0,1,2, \ldots\}$
$-\mathbb{Z}^{+}$: Positive integers $\{1,2,3, \ldots\}$
$-\mathbb{Z}^{*}$: Non-negative integers $\{0,1,2,3, \ldots\}$
$-\mathbb{Z}^{-}$: Negative integers $\{\ldots,-3,-2,-1\}$
$-\mathbb{Z}^{\text {even }}:$ Even integers $\{\ldots,-4,-2,0,2,4, \ldots\}$
$-\mathbb{Z}^{\text {odd }}:$ Odd integers $\{\ldots,-3,-1,1,3, \ldots\}$
- \mathbb{Q} : Rational numbers
- $\overline{\mathbb{Q}}$: Irrational numbers
$-\mathbb{R}$: all real numbers

4 Associative, Commutative, Distributive, and Transitive properties

- Associative: An operation \diamond is associative if $a \diamond(b \diamond c)=(a \diamond b) \diamond c$
- Commutative: An operation \diamond is commutative if $a \diamond b=b \diamond a$
- Distributive: Operations \diamond and \square are distributive if:

$$
\begin{aligned}
& a \square(b \diamond c)=(a \square b) \diamond(a \square c)(\square \text { is left-distributive over } \diamond) \underline{\text { and }} \\
& (b \diamond c) \square a=(b \square a) \diamond(c \square a)(\square \text { is right-distributive over } \diamond)
\end{aligned}
$$

- Transitive: An relationship \circ is transitive if whenever $a \circ b$ and $b \circ c$, then $a \circ c$ (e.g. $a<b$ and $b<c$ implies $a<c$).

5 Properties of Inequalities

- Addition: If $a<b$, then $a+c<b+c$. This holds for $\leq,>, \geq$.
- Multiplication $(c>0)$: If $a<b$, then $a c<b c$. This holds for $\leq,>, \geq$.
- Multiplication $(c<0)$: If $a<b$, then $a c>b c$. This holds for $\leq,>, \geq$ (the sign flips).
- Subtraction follows the rules of addition. Division follows the rules of multiplication.

6 Summation and Product Notations

- Summation Notation: In $\sum_{i=0}^{k} s(i), i$ is the index, $i=0$ is the lower limit, k is the upper limit, and $s(i)$ is the sequence we are summing.
- Product Notation: In $\prod_{i=0}^{k} s(i)$, everything is the same as summation, except we use π to indicate that we multiply the sequence.

7 Integer Division

- Modulo - Denoted by $\%$ or mod, the modulus operator gives the remainder of an integer division. E.g. $10 \% 4=2$
- Congruency $-a$ is congruent to b modulo $m($ denoted $a \equiv b(\bmod m))$, if $a \% m=b \% m$ $\overline{\text { or }(a-b) \% m}=0$
- Divides: - The "divides" operator, denoted $a \mid b$, returns True if $b \% a=0$ and False otherwise.

8 Evens and Odds

- Even - An integer, n is even if there exists an integer k such that $n=2 k$ (or $2 \mid n$, $n \% 2=0, n \equiv 0 \bmod 2)$
- Odd - An integer, n is odd if there exists an integer k such that $n=2 k+1$ (or $2 \nmid n$, $n \% 2=1, n \equiv 1 \bmod 2$)

9 Logarithms and Exponents

Laws of Exponents and Logarithms:

(a) $w^{x+y}=w^{x} w^{y}$
(b) $\left(w^{x}\right)^{y}=w^{x y}$
(c) $v^{x} w^{x}=(v w)^{x}$
(d) $\frac{w^{x}}{w^{y}}=w^{x-y}$
(e) $\frac{v^{x}}{w^{x}}=\left(\frac{v}{w}\right)^{x}$
(f) $\log _{b}\left(x^{y}\right)=y \log _{b} x$
(g) $\log _{b}(x y)=\log _{b} x+\log _{b} y$
(h) $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
(i) $b^{\log _{b} x}=x$
(j) $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
(k) If $b^{y}=x$, then $\log _{b} x=y$

10 Quadratic Equations

- Quadratic Equation: Equation of the form $a x^{2}+b x+c$ where $a \neq 0$
- Factoring Quadratics: $(f x+d)(g x+e)=(f g) x^{2}+(g d+f e) x+d e$
- Quadratic Formula: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

11 Number Systems

- Binary: Base 2, Digits 0,1 • Decimal: Base 10, Digits 0-9
- Octal: Base 8, Digits 0-7 • Hexadecimal: Base 16, Digits 0-9,A-F

