Matrices

Section 2.6

Why are We Studying Matrices?

- Matrices have plenty of uses in CS
- Representation ...
- ... of the graph data structure
- ... of functions and relations (next two topics we'll cover)
- Affine transformations in Computer Graphics
- Example to come!

Matrix Fundamentals

Definition: Matrix

A matrix is an n-dimensional collection of values

Notation

$$
A=\left[a_{i j}\right]=\left(a_{i j}\right)
$$

Matrix Fundamentals

Definition: Square Matrices

Matrices in which the number of rows equals the number of columns

Matrix Fundamentals

Definition: Square Matrices

Matrices in which the number of rows equals the number of columns

Definition: Matrix Equality
Matrices A and B are equal if they share the same dimensions and each pair of corresponding elements is equal, i.e. $a_{i j}=b_{i j}$ for $1 \leq i \leq n, 1 \leq j \leq m$

Matrix Fundamentals

Definition: Transposition

The transposition of an $m \times n$ matrix A is an $n \times m$ matrix A^{T} in which the rows and columns are exchanged. $a_{i j}=a_{j i}^{T}$

$$
A=\left[\begin{array}{ll}
4 & 3 \\
0 & 2 \\
1 & 1
\end{array}\right] \quad A^{T}=\left[\begin{array}{lll}
4 & 0 & 1 \\
3 & 2 & 1
\end{array}\right]
$$

Matrix Fundamentals

Definition: Transposition

The transposition of an $m \times n$ matrix A is an $n \times m$ matrix A^{T} in which the rows and columns are exchanged. $a_{i j}=a_{j i}^{T}$

Definition: Matrix Symmetry

Matrix A is symmetric if $A=A^{T}$ (note: A is square).

$$
\left[\begin{array}{lll}
4 & 3 & 1 \\
3 & 2 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Matrix Operations

1. Matrix Addition

Definition: Matrix Addition (a.ka. Matrix Sum)

The sum of two $n \times m$ matrices A and B is the $n \times m$ matrix C such that $c_{i j}=a_{i j}+b_{i j}$

$$
\begin{aligned}
A=\left[\begin{array}{ll}
6 & 0 \\
4 & 2
\end{array}\right] & B=\left[\begin{array}{cc}
-1 & 3 \\
1 & 0
\end{array}\right] \\
A+B & =\left[\begin{array}{cc}
6+-1 & 0+3 \\
4+1 & 2+0
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
5 & 2
\end{array}\right]
\end{aligned}
$$

Note: $A+B=B+A$
(matrix addition is commutative).

Matrix Operations

2. Scalar Product

Definition: Scalar

A scalar is a real number (in this context)
Definition: Scalar Product
The product of a scalar d and an $n \times m$ matrix A is the $n \times m$ matrix B such that $b_{i j}=d \cdot a_{i j}$

$$
A=\left[\begin{array}{ll}
6 & 0 \\
4 & 2
\end{array}\right] \quad \frac{1}{2} A=\left[\begin{array}{ll}
\frac{1}{2} \cdot 6 & \frac{1}{2} \cdot 0 \\
\frac{1}{2} \cdot 4 & \frac{1}{2} \cdot 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right]
$$

Matrix Operations

3. Matrix Product

Definition: Matrix Product (a.ka. Matrix Multiplication)

The product of an $m \times n$ matrix A and an $n \times k$ matrix B, is an $k \times m$ matrix $C=A \cdot B$ in which $c_{i j}=\sum_{k=1}^{n}\left(a_{i k} \cdot b_{k j}\right)$.

- Matrix multiplication is associative and distributive

Matrix Operations

Recall: $c_{i j}=\sum_{k=1}^{n}\left(a_{i k} \cdot b_{k j}\right)$
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 k} \\ a_{21} & a_{22} & \ldots & a_{2 k} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \ldots & a_{i k} \\ \vdots & \vdots & & \vdots \\ a_{12} & a_{1}\end{array}\right] \quad B=\left[\begin{array}{cccccc}b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\ b_{21} & b_{22} & \ldots & b_{2 j} & \ldots & b_{2 n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots & b_{k n}\end{array}\right] \quad C=\left[\begin{array}{cccc}c_{11} & c_{12} & \ldots & c_{1 n} \\ c_{21} & c_{22} & \ldots & c_{2 n} \\ \vdots & \vdots & c_{i j} & \vdots \\ c_{m 1} & c_{m 2} & \ldots & c_{m n}\end{array}\right]$
$m \times k$
$k \times n$ $m \times n$

Let $C=A \cdot B \quad$ Element $c_{i j}$ is calculated by:
$c_{i j}=\left[\begin{array}{llll}a_{i 1} & a_{i 2} & \ldots & a_{i k}\end{array}\right] \cdot\left[\begin{array}{c}b_{1 j} \\ b_{2 j} \\ \vdots \\ b_{k j}\end{array}\right]=a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\ldots+a_{i k} \cdot b_{k j}$

Matrix Operations

$$
\begin{aligned}
& \text { Recall: } c_{i j}=\sum_{k=1}^{n}\left(a_{i k} \cdot b_{k j}\right) \\
& A=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
4 & 1 \\
1 & 0
\end{array}\right] \quad A B=\left[\begin{array}{ll}
7 & 1 \\
9 & 2
\end{array}\right]
\end{aligned}
$$

Because A has $\mathbf{2}$ columns and B has $\mathbf{2}$ rows, $A B$ can be computed Boxes example: Row [13] and column [4 1]: $1 \cdot 4+3 \cdot 1=7$

$$
B A=\left[\begin{array}{cc}
6 & 13 \\
1 & 3
\end{array}\right] \quad \begin{gathered}
\text { Matrix product is not } \\
\text { generally commutative }
\end{gathered}
$$

Matrix Operations

$$
\begin{gathered}
A=\begin{array}{c}
{\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]} \\
3 \times 1
\end{array} \quad B=\left[\begin{array}{ll}
2 & 1
\end{array}\right] \quad A \cdot B=\left[\begin{array}{ll}
\square & \square \\
\square & \square \\
\square & \square
\end{array}\right] \\
B \rightarrow\left[\begin{array}{ll}
2 & 1
\end{array}\right] \\
A \rightarrow\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
-2 & -1 \\
6 & 3
\end{array}\right]=A \cdot B
\end{gathered}
$$

Matrix Operations

$$
\begin{gathered}
A=\left[\begin{array}{lll}
0 & -1 & 3
\end{array}\right] \quad B=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \\
1 \times 3
\end{gathered}
$$

$$
A \cdot B=[0 \cdot 2+-1 \cdot 1+3 \cdot 3]=[8]
$$

Identity Matrix

- Remember the concept of Multiplicative Identity?
- $1 \cdot x=x$

Definition: Identity Matrix

The Identity Matrix is an $n \times n$ matrix $\left(I_{n}\right)$ populated with 1's down the main (upper left to lower right) diagonal and with 0's elsewhere.

$$
\text { If } A \text { is } m \times n: \underset{m \times n}{A} \cdot \underset{n \times n}{I_{n}}=\underset{m \times m}{I_{m}} \cdot \underset{m \times n}{A}=\underset{m \times n}{A}
$$

Matrix Power

Definition: $n^{\text {th }}$ Matrix Power

The $n^{\text {th }}$ power of a $m \times m$ matrix A, denoted A^{n}, is the result of $n-1$ successive matrix products of A

$$
\begin{aligned}
& A^{4}=((A \cdot A) \cdot A) \cdot A=A \cdot(A \cdot(A \cdot A)) \\
& A^{0}=? \quad\left[\text { Answer: } A^{0}=I_{m}, \text { because } A \text { is } m \times m\right]
\end{aligned}
$$

Example: Affine Transformations

- Used to 'move' objects in computer graphics
- Background:

Translation: $(x, y) \Rightarrow\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

Scaling: $(x, y) \Rightarrow\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& x^{\prime}=s_{x} \cdot x \\
& y^{\prime}=s_{y} \cdot y
\end{aligned}
$$

Example: Affine Transformations

(1) Scale (2x2)

$$
s_{x}=s_{y}=2
$$

(2) Translate
$t_{x}=1 ; t_{y}=3$

Example: Affine Transformations

Translation: $\left[\begin{array}{ccc}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right] \quad$ Scaling: $\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\text { So: }\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

(Combined transformation matrix
$(2,0) \Rightarrow(5,3):\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 3 \\ 1\end{array}\right]$

Zero-One Matrices

- All entries are 0 or 1 , used to represent discrete structures
- Three Operations:

1. 'Join': $(A \vee B)$ - inclusive OR of pairs of values
2. 'Meet': $(A \wedge B)$ - AND of corresponding pairs

$$
\begin{array}{rr}
M=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] & N=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
M \vee N=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] & M \wedge N=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]
\end{array}
$$

Zero-One Matrices

1. 'Boolean Product': Consider $A(m \times n)$ and $B(n \times l) . C=A \odot B$ is $m \times l$ where $c_{i j}=\bigvee_{k=1}^{n}\left(a_{i k} \wedge b_{k j}\right)$
$E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right] \quad F=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \quad G=E \odot F=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& g_{33}=\bigvee\left(e_{3 k} \wedge f_{k 3}\right)=(1 \wedge 0) \vee(1 \wedge 1) \\
& =0 \vee 1=1
\end{aligned}
$$

Zero-One Matrices

Definition: $r^{\text {th }}$ Boolean Power

The $r^{\text {th }}$ Boolean Power of an $n \times n$ matrix $A, A^{[r]}$, is the $n \times n$ resulting form of $r-1$ successive boolean products.

Note: $A^{[0]}=I_{n}$

