
Introduction to Proofs



Terminology
Definition: Conjecture


A statement with an unknown truth value

Definition: Theorem


A conjecture that has been shown to be true

Definition: Proof

A sound argument that establishes the truth of a 
theorem



Terminology
Definition: Lemma


A simple theorem whose truth is used to 
construct more complex theorems.

Definition: Corollary

A theorem whose truth follows directly from 
another theorem

Example: 
Theorem: If x is a multiple of 4, then 4|x.

Corollary: 2|x



Formal vs. Informal
Definition: Formal Proof


Arguments where all steps were supplied  and 
rules for each step in the argument are given. 

Definition: Informal Proof

Proofs where more than one rule of inference may 
be used in each steps, steps may be skipped, 
axioms begin assumed, and rules of inference are 
not explicitly stated. 

We saw this in the last lecture!

What we’ll primarily use, easier to read



Why do People Fear Proofs?

1. Proof don’t come from an assembly line


‣ Need knowledge, persistence, and creativity


2. Creating proofs seems like magic


‣ But they are systematic in many ways


3. Proofs are hard to read and understand


‣ Only if the writer makes them so


4. Institutionalized Fear


‣ Many teachers avoid them in classes



Constructing a proof
1. There are several proof techniques for a reason


‣ One may be easier to use than others


2. Knowledge of mathematics is important


‣ Remember our math review?


3. There are “tricks” to know


‣ Ex: Dividing an even # in half leaves no remainder


4. Practice helps …. a lot!


‣ Just as it does for most everything


5. Dead ends are expected


‣ Proofs in books are final,  polished version



Types of Proofs
1. Direct Proof


‣ The most common variety


2. Proof by Contraposition


‣ Like Direct, but with a twist


3. Proof by Contradiction


‣ A dark road on foggy night


4. Proof by Mathematical Induction


‣ Wait for it



Direct Proofs
• We’re trying to prove conjectures of the form  (if  

is true, then the truth of  logically follows)


• So:


• To prove : Assume  and deduce .


• (Show that  never happens)

p → q p
q

p → q p q

true → false



Example
Conjecture: If  an is an even, then  is also even, . n n2 n ∈ ℤ

Proof (direct): Assume  is even.  


By definition of an even integer, we know 


Thus, 


Since  is a multiple of 2, we know that it is even.


Therefore, if  is an even, then  is also even, .         

n

∃k∈ℤ  s.t. n = 2k

n2 = (2k)2 = 4k2 = 2(2k2)

n2

n n2 n ∈ ℤ



Proof-Writing Miscellanea

• Remember: A conjecture isn’t a theorem until proven


• Don’t lose sight of your destination


• When writing proofs:


1. Always start with “Proof (style):”


2. State your allowed assumptions


3. Define all introduced variables


4. End proofs with “Therefore” and the conjecture



A Conjecture About Inequalities

Proof (direct): Assume  and both  and  are positive 
real numbers.  


Multiplying both sides of  by  gives 


Multiplying both sides of  by  gives 


By transitivity of , we get 


Therefore, if , then  where 

a < b a b

a < b a a2 < ab

a < b b ab < b2

< a2 < b2

0 < a < b a2 < b2, a, b ∈ R

Conjecture: If , then  where . 0 < a < b a2 < b2, a, b ∈ R



Example
Conjecture: If  and  are both perfect squares, then  is also a 
perfect square.

m n nm

Proof (direct):   is perfect square if an integer  s.t. 


Assume  are perfect squares.  By definition, 
 and .





Thus  is a perfect square.


Therefore, If  and  are both perfect squares, then  is 
also a perfect square.

a b a = b2

m and n
∃k∈ℤ s.t. m = k2 ∃j∈ℤ s.t. n = j2

mn = k2j2 = kkjj = (kj)(kj) = (kj)2

mn

m n nm



Remember: Contrapositive
Definition: Contrapositive


Given            , the inverse is p ! q ¬q ! ¬p

Note: ⌘ ¬q ! ¬pp ! q

T

F

T
F
T
F

T
F

T

T

F
T

F

T

F
T

F

T

T
F

T

T

F
T

p q p ! q ¬q ! ¬p¬q¬p



Proof by Contraposition
• We know that 


• So to prove , we can instead prove by 
assuming  is true and showing that  must follow. 

p → q ≡ ¬q → ¬p

p → q ¬q → ¬p
¬q ¬p



Proof by Contraposition

Proof (by contraposition): (We need to show that when we assume that  
is odd, this implies that  is odd, given that .) 

 Assume that  is odd.  We want to show that   is also odd.


By definition of odd,  s.t. ,


Thus, 


Since  has the form  (where  and ),  is 
odd 


Therefore, if , then , when . 

n
n2 n ∈ ℤ

n n2

∃k∈ℤ n = 2k + 1

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

n2 2m + 1 m = 2k2 + 2k m ∈ ℤ n2

ac ≤ bc c ≤ 0 a > b

Conjecture: If  is even, then  is even (  is implicit) n2 n n ∈ ℤ



What we just showed:
• We started with “Given that  is an integer (implicit), if  is 

even, then  is even”.  In the form ,  and 
.


• So the contrapositive, , is 
 which is the same as 

.


• We showed that given ,   . 


• Which is equivalent to showing “Given , if  is even, then 
 is even”

n n2

n p → q p : n2 is even
q : n is even

¬q → ¬p
¬(n is even) → ¬(n2 is even)
n is odd → n2 is odd)

n ∈ ℤ n is odd → n2 is odd

n ∈ ℤ n2

n



Proof by Contraposition

Proof (by contraposition):  (We need to show that when we 
assume that , this implies that , given that .)


We are given .  Assume .


By multiplying both sides by positive value , we get 
. ( Because  is positive, the inequality does not 

change)


Therefore, if , then , when . 

c > 0 ac > bc a > b

a > b c > 0

c
ac > bc c

ac ≤ bc c ≤ 0 a > b

Conjecture: If , then , when . ac ≤ bc c ≤ 0 a > b



Proof by Contradiction
• Recall the Law of Implication: 


• Now consider 


• 


• In a proof by contradiction, instead of trying to show that 
, we try to show that .


• So:


• To prove  Assume  and show a contradiction.

p → q ≡ ¬p ∨ q

¬(p → q)

¬(p → q) ≡ ¬(¬p ∨ q) ≡ p ∧ ¬q

p → q ≡ T p ∧ ¬q ≡ F

p → q : p ∧ ¬q



Proof by Contradiction

Proof (by contraposition):  Assume that  is odd and  is 
even. 


By definition,  s.t. ,


Thus, 


This shows that  is even, which is a contradiction of the 
assumption that  is odd.


Therefore, if  is odd, then  is odd

3n + 2 n

∃k∈ℤ n = 2k

3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)

3n + 2
3n + 2

3n + 2 n

Conjecture: If  is odd, then  is odd3n + 2 n



What we just showed:
• We started with “If  is odd, then  is odd”.  In the form 

,  and .


• Remember: 


• So the negation is  which is the 
same as .


• We showed that   . 


• Which is equivalent to showing “If  is odd, then  is 
odd”

3n + 2 n
p → q p : 3n + 2 is odd q : n is odd

¬(p → q) ≡ ¬(¬p ∨ q) ≡ p ∧ ¬q

(3n + 2 is odd) ∧ ¬(n is odd)
(3n + 2 is odd) ∧ (n is even)

(3n + 2 is odd) ∧ ¬(n is odd) ≡ F

3n + 2 n



Proof by Contradiction

Proof (Contradiction): Assume that , , and that 
 is a perfect square.


By definition,  s.t.  and  s.t. .  








Thus we know that  is even   

(continued…)

n = a2 + b2 a, b ∈ ℤodd

n

∃k∈ℤ a = 2k + 1 ∃j∈ℤ a = 2j + 1

n = a2 + b2 = (2k + 1)2 + (2j + 1)2

= 4k2 + 4k + 1 + 4j2 + 4j + 1 = 2(2k2 + 2k + 2j2 + 2j + 1)

n

Conjecture: The sum of the squares of two odd integers is 
never a perfect square. (Or: If , then  is not a 
perfect square where 

n = a2 + b2 n
a, b ∈ ℤodd



Proof by Contradiction

Proof (Contradiction): Because  is a perfect square, .  We 
know  is even, so  is even. 


From an earlier proof, we know that if  is even,  is even so by that result, 
 is even.


Thus,  s.t.  and .  Thus  is divisible by 4. But 
earlier, we showed that  which is not 
divisible by four. 


This is a contradiction.  Therefore, if , then  is not a perfect 
square, where 

n n = m2, m ∈ ℤ
n m2

x2 x
m

∃r∈ℤ m = 2r n = m2 = 4r2 n
n = 2(2k2 + 2k + 2j2 + 2j + 1)

n = a2 + b2 n
a, b ∈ ℤodd

Conjecture: The sum of the squares of two odd integers is 
never a perfect square. (Or: If , then  is not a 
perfect square where 

n = a2 + b2 n
a, b ∈ ℤodd



Proof by Contradiction

Proof (by contraposition):  Assume not.  Assume that  is rational.


By definition of rational,  s.t. , where  is in lowest terms. 


,     which implies that  is even, which means  is even 

(proved earlier).  Thus 


.  Thus,  which means  is even and thus  is even. 


However, that means  is not in lowest terms, which is a contradiction. 


Therefore  is irrational.

2

∃p,q∈ℤ 2 =
p
q

p
q

2 = (p
q )2 =

p2

q2
2q2 = p2 p2 p

∃k∈ℤ s.t. p = 2k

2q2 = (2k)2 = 4k2 q2 = 2k2 q2 q
p
q

2

Conjecture:  is irrational.2



Playposit: What type of proof is this

Proof (by ? ):  Assume .  Assume .  


 so  is even.  We know from prior 
proofs that this means  is also even. 





. Dividing by 2 we get, .


This implies that 1 is even (because  and  are integers).  


Thus, if , then . 

a, b ∈ ℤ ∃a,b s.t. a2 − 4b = 2

a2 = 2 + 4b = 2(2b + 1) a2

a

a2 − 4b = (2k)2 − 4b = 4k2 − 4b = 4(k2 − b)

4(k2 − b) = 2 2(k2 − b) = 1

k b

a, b ∈ ℤ a2 − 4b ≠ 2

Conjecture: If , then . a, b ∈ ℤ a2 − 4b ≠ 2



Proof by Cases
• How would you prove “if  and , then 

”?


• There are only 4 cases!


• 


•  Simply show that it is true for all cases:

n ∈ ℤ+ n ≤ 4
(n + 1)2 ≥ 3n

n = 1,2,3,4



Proof by Cases
Proof (By Cases): 

Case 1: .  .  . Thus . 

Case 2: .  .  . Thus . 

Case 3: .  .  . Thus . 

Case 4: .  .  . Thus . 

Thus the if  and , then it is not true that 

n = 1 (n + 1)2 = 22 = 4 3n = 31 = 3 (n + 1)2 ≥ 3n

n = 2 (n + 1)2 = 32 = 9 3n = 32 = 9 (n + 1)2 ≥ 3n

n = 3 (n + 1)2 = 42 = 16 3n = 33 = 27 (n + 1)2 ≱ 3n

n = 4 (n + 1)2 = 52 = 25 3n = 34 = 81 (n + 1)2 ≱ 3n

n ∈ ℤ+ n ≤ 4 (n + 1)2 ≥ 3n

Conjecture: “if  and , then ”n ∈ ℤ+ n ≤ 4 (n + 1)2 ≥ 3n



Proof by Cases
Proof (By Cases): 


Observe that if , then , otherwise, . 

Case 1: .  , .


Case 2: .  , .


Case 3: (Same as case 2 with x and y reversed) 

Case 4: .  , . 

Therefore, .

x < 0 |x | = − x |x | = x

x > 0, y > 0 |x | |y | = xy |xy | = xy

x > 0, y < 0 |x | |y | = (x)(−y) |xy | = − xy

x < 0, y < 0 |x | |y | = (−x)(−y) = xy |xy | = xy

|x | |y | = |xy |

Conjecture: |x | |y | = |xy |



Proof by Cases

Proof (By Cases): 


Case 1: .  . Multiply both sides by  . 
Thus .


Case 2: .  . By definition, . 
Thus .


Case 3: .  . Thus . 

Therefore, .

n > 0 n ≥ 1 n : n ⋅ n ≥ n
n2 ≥ n

n < 0 n ≤ − 1 n2 > 0 > − 1 ≥ n
n2 ≥ n

n = 0 n2 = 0 = n n2 ≥ n

n2 ≥ n

Conjecture: if , then n ∈ ℤ n2 ≥ n



Proof by Cases

Proof (By Cases): 


Consider all possible combinations of values of  and 
r s

Conjecture: s → r ≡ ¬r → ¬s

Case 1
Case 2
Case 3
Case 4

Therefore, s → r ≡ ¬r → ¬s

(Truth tables are a direct proof by cases)

s r s ! r ¬r ! ¬s
T T T T
T F F F
F T T T
F F T T



Playposit: What case is missing 
from this proof?

Proof (By Cases):


Case 1: .  When  is positive,  is positive because 
it is the product of two positive numbers,  and .


Case 2: .  When  is negative,  is positive because 
it is the product of two negative numbers,  and .


Therefore, if , then  

x > 0 x x2

x x

x < 0 x x2

x x

x ∈ ℝ x2 > 0

Conjecture: if , then  x ∈ ℝ x2 > 0



Poor Arguments lead to 
 Poor Proofs

Proof: 


Conjecture: 2=1

Step Reason
1. a = b Given
2. a2 = ab Multiply both sides of (1) by a
3. a2 � b2 = ab� b2 Subtract b2 from both sides of (2)
4. (a� b)(a+ b) = b(a� b) Factor both sides of (3)
5. (a+ b) = b Divide (4) by a� b
6. 2b = b Replace a with b in (5) because a = b
7. 2 = 1 Divide both sides of (6) by b

Where did we go wrong?

!a − b = 0



Poor Arguments lead to 
 Poor Proofs

Proof: 

Consider  s.t. . 

Take the base 10 log of both sides of : 

By definition, 


Divide both sides by 


Which reduces to 

Therefore, 


x 0 < x < 1
x < 1 log10 x < log10 1

log10 1 = 0

log10 x :
log10 x
log10 x

<
0

log10 x
1 < 0

1 < 0.

Conjecture: 1 < 0

Where did we go wrong?

! So < flips to . 
This yields 

log10 x < 1
1 > 0



Playposit: Is this proof correct?

Proof: 

Let   .  .

Let   .  .

Let   .  . 

This shows no sign of failing.

Therefore, .

x = 1. 12 − 1 = 0 0 % 4 = 0
x = 3. 32 − 1 = 8 8 % 4 = 0
x = 5. 52 − 1 = 24 24 % 4 = 0

∀n∈ℤodd, (n2 − 1) % 4 = 0

Conjecture: ∀n∈ℤodd, (n2 − 1) % 4 = 0

Where did we go wrong?
Poor attempt at an inductive proof. The argument 

must convince us that the pattern holds indefinitely



Proving “if and only if” 
Expressions

• Recall: 


• So:


• To prove , we need to prove both  and 

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q p → q
q → p

Example: We’ve recently shown:


     , and


     


Therefore 

n ∈ ℤeven → n2 ∈ ℤeven

n2 ∈ ℤeven → n ∈ ℤeven

(n ∈ ℤeven) ↔ (n2 ∈ ℤeven)



Disproving Conjectures
• Typical Approaches: 


1. Prove that the conjecture’s negation is true


• i.e. show that 


2. Find a counterexample (very commonly used!)


• An element for which the conjecture is false

¬(p → q) ≡ p ∧ ¬q ≡ T



Disproving Conjectures

Proof: 


Let .  divisors are  and .


. 


Thus at least one such integer does exist, showing that the conjecture 
is not true.


(such integers are called ‘perfect’ numbers)


Note: We know that no odd from 1 through  is a perfect 
number, but there is no proof that no odd number is perfect.

n = 6 6′�s 1, 2, 3, 6

1 + 2 = 3 = 6 = 12 = 2n

10300 − 1

Conjecture: No integer  exists s.t. the sum of its divisors 
equals 

n
2n



Existence Proofs
• Proposition that has the form .


• Find an object or show that one exists

∃xP(x)

• Two main types:


• Constructive - find an element such that  is true


• Non-Constructive - don’t find an element, prove 
existence in some other way (e.g. contradiction or 
contrapositive)

P(x)



Constructive Existence Proofs

Proof: 


13 = 4 + 9 = 22 + 32

Conjecture: There exists an integer that can be written as 
the sum of two perfect squares



Non-Constructive Existence 
Proofs

Proof: 


In Example 11 from 1.7, we know that  is irrational.


Let . Now . 


If  is rational, we are done. 


If not, it is irrational. In that case, let’s try .


 which is rational. 


Thus, there exists irrational numbers  and  s.t.  is rational

2

x = y = 2 xy = 2
2

2
2

( 2
2
) 2

( 2
2
) 2 = ( 2) 2 2 = 2

2
= 2

x y xy

Conjecture: There exists irrational numbers  and  s.t.  is rationalx y xy



Uniqueness Proofs
• Proposition has the form .


• Show that exactly one object exists that makes  true

∃x(P(x) ∧ ∀y (P(X) → x = y))

P(x)
• Steps:


• First show that for some object ,  is true


• Second, Show that for any other , if  is true, 
then 


• Alternatively, if , then  must be false. 

x P(x)

y P(y)
x = y

y ≠ x P(y)



Uniqueness Proofs

Proof: 


First, note that  is a solution to 


Now, suppose that  is a real number s.t. 


Then  where . 


Subtracting  from both sides, we get . 

Dividing both sides by  (which is not zero), we see that . 

Thus, if  and  are real numbers and , then there is a unique 
real number  s.t. 

r = −
b
a

ar + b = 0

s as + b = 0

ar + b = as + b r = −
b
a

b ar = as
a r = s

a b a ≠ 0
r ar + b = 0

Conjecture: If  and  are real numbers and , then there is a 
unique real number  s.t. 

a b a ≠ 0
r ar + b = 0



Summary of Proof Strategies 

• Direct Proof:  is proved by directly showing that if  is 
true, then  must follow.

• Proof by Contraposition: Prove  by proving  

• Proof by Contradiction: Prove that the negation of the theorem 
yields a contradiction

• Proof by Cases:  Exhaustively enumerate all different 
possibilities  and prove the theorem for each case

p → q p
q

p → q ¬q → ¬p



Invalid Proof Strategies 
• Proof by Obviousness: “The proof is so clear it need not be 

mentioned”

• Proof by Intimidation: Don’t be stupid - of course it’s true! 

• Proof by mumbo-jumbo: “ ”

• Proof by Intuition:  “I have a gut feeling”

• Proof by resource limits:  “Due to lack of space, we omit this part of 
the proof….”

• Proof by Illegibility:  “asdfasdgijelkd. ”

∀a ∈ A, ∃b ∈ a ⋄ b ≅ c

∎



Reminders

• Homework 3 due Friday by 5pm. 


• Quiz 3 on Tuesday


• Homework 4 released this Friday (6/26) and will be due 
next Thursday (7/2) by 5pm! (July 3rd is a holiday)


