Quantification Examples

Converting From Quantified Predicates to Propositional Logic

Example 1:

Let P(x) : x is a prime number, $x \in \mathbb{Z}$

Express $\forall x P(x), x \in \{3,5,7,9,11\}$ in propositional logic.

$P(3) \wedge P(5) \wedge P(7) \wedge P(9) \wedge P(11)$

What is its truth value?

Converting From Quantified Predicates to Propositional Logic

Example 2:

Let P(x) : x is a prime number, $x \in \mathbb{Z}$

Express $\neg \forall x P(x), x \in \{3, 5, 7, 9, 11\}$ in propositional logic.

 $\neg (P(3) \land P(5) \land P(7) \land P(9) \land P(11))$ $\equiv \neg P(3) \lor \neg P(5) \lor \neg P(7) \lor \neg P(9) \lor \neg P(11)$

What is its truth value?

Converting From Quantified Predicates to Propositional Logic

Example 3:

Let P(x) : x is a prime number, $x \in \mathbb{Z}$

Express $\exists x \neg P(x), x \in \{3,5,7,9,11\}$ in propositional logic.

 $\neg P(3) \lor \neg P(5) \lor \neg P(7) \lor \neg P(9) \lor \neg P(11)$

Same proposition as $\neg \forall x P(x), x \in \{3,5,7,9,11\}!$ Generalized De Morgan's Laws

Example 1: Express the following statement using Logic

"Some people in this class have seen Star Wars"

1. What are our predicates and their domains?

S(x) : x has seen Star Wars, $x \in$ People

2. What is our domain?

People in this class

2b. Does our domain create new predicates?

Yes! C(x) : x is in this class, $x \in$ People

3. What quantifier do we use?

 $\exists x$

Example 1: Express the following statement using Logic

"Some people in this class have seen Star Wars"

Putting it all together:

S(x): x has seen Star Wars, $x \in$ People C(x): x is in this class, $x \in$ People

$\exists x (C(x) \land S(x)), x \in \mathbf{People}$

Example 2: Express the following statement using Logic

"All people in this class who have seen Star Wars think it's great"

1. What are our predicates and their domains?

S(x) : x has seen Star Wars, $x \in$ People

2. What is our domain?

People in this class

2b. Does our domain create new predicates?

Yes! C(x) : x is in this class, $x \in$ People

3. What quantifier do we use?

 $\forall x$

Example 2: Express the following statement using Logic

"All people in this class who have seen Star Wars think it's great"

Putting it all together:

S(x): x has seen Star Wars, $x \in$ People G(x): x thinks Star Wars is great, $x \in$ People C(x): x is in this class, $x \in$ People

 $\forall x ((C(x) \land S(x)) \rightarrow G(x)), x \in \text{People}$

Example 1: Express the following statement in English

" $\forall x (C(x) \rightarrow (P(x) \land J(x))), x \in \text{People"}$ Where J(x) : x knows Java P(x) : x knows Python C(x) : x is in this class

Everyone in this class knows Python and Java

Example 2: Express the following statement in English

" $\forall x (C(x) \land P(x) \land J(x)), x \in \text{People"}$ Where J(x) : x knows Java P(x) : x knows Python C(x) : x is in this class

All people are in this class and know Python and Java

Example 3: Express the following statement in English

" $\exists x (C(x) \rightarrow (P(x) \land J(x))), x \in \text{People"}$ Where J(x) : x knows Java P(x) : x knows Python C(x) : x is in this class

For some person, if they are in this class, then they know Python and Java

Example 4: Express the following statement in English

" $\exists x (C(x) \land P(x) \land J(x)), x \in \text{People"}$ Where J(x) : x knows Java P(x) : x knows Python C(x) : x is in this class

Someone in this class knows Python and Java

Converting From English to Nested Quantifiers

Example 1: Express the following statement using Logic

If x < y, then ax < ay

1. What are our predicates and their domains?

 $P(x,y): x < y, \ x,y \in \mathbb{R}. \ Q(a,x,y): ax < ay, \ x,y,a \in \mathbb{R}$

2. What is our domain?

 \mathbb{R}

2b. Does our domain create new predicates?

No.

3. What quantifier(s) do we use?

 $\forall x, \forall y, \forall a$

Example 1: Express the following statement using Logic

If x < y, then ax < ay

Putting it all together:

 $P(x, y) : x < y, \ x, y \in \mathbb{R}.$ $Q(a, x, y) : ax < ay, \ x, y, a \in \mathbb{R}$

$$\forall x \forall y \forall a \left(P(x, y) \to Q(a, x, y) \right), \ x, y, a \in \mathbb{R}$$

Note: The truth value of this statement is false. For this statement to be true, *a* needs to be positive!

Converting From English to Nested Quantifiers

Example 2: Express the following statement using Logic "The difference of two positive integers is not necessarily positive"

1. What are our predicates and their domains?

 $P(x,y): x-y>0, \ x,y\in \mathbb{R}. \ Q(x): x>0, \ x\in \mathbb{R}$

2. What is our domain?

 \mathbb{Z}

2b. Does our domain create new predicates?

No.

3. What quantifier(s) do we use?

 $\exists x, \exists y$

Converting From English to Nested Quantifiers

Example 2: Express the following statement using Logic

"The difference of two positive integers is not necessarily positive"

Putting it all together:

 $P(x, y) : x - y > 0, \ x, y \in \mathbb{R}.$ $Q(x) : x > 0, \ x \in \mathbb{R}$

 $\exists x \exists y (Q(x) \land Q(y) \land \neg P(x, y)), \ x, y \in \mathbb{Z}$

Example 1: Express the following statement in English

" $\exists x \forall y ((C(x) \land C(y)) \rightarrow F(x, y)), x, y \in \text{People"}$ Where C(x) : x is in this class, $x \in \text{People}$ F(x, y) : x and y are friends, $x, y \in \text{People}$

Someone in this class is friends with everyone else in this class

Example 2: Express the following statement in English

" $\forall x \forall y ((C(x) \land C(y)) \rightarrow F(x, y)), x, y \in \text{People"}$ Where C(x) : x is in this class, $x \in \text{People}$ F(x, y) : x and y are friends, $x, y \in \text{People}$

Everyone in this class is friends with everyone in this class

Example 3: Express the following statement in English

" $\exists x \exists y (C(x) \land C(y) \land F(x, y)), x, y \in \text{People"}$ Where C(x) : x is in this class, $x \in \text{People}$ F(x, y) : x and y are friends, $x, y \in \text{People}$

Two people in this class are friends.

Note: the two people don't have to be different, they could be the same person

Example 4: Express the following statement in English

" $\forall x (C(x) \rightarrow \exists y (C(y) \land F(x, y))), x, y \in \text{People"}$ Where C(x) : x is in this class, $x \in \text{People}$ F(x, y) : x and y are friends, $x, y \in \text{People}$

Everyone in this class is friends with someone in this class