Quantification Examples

Converting From Quantified Predicates to Propositional Logic

Example 1:

Let $P(x): x$ is a prime number, $x \in \mathbb{Z}$

Express $\forall x P(x), x \in\{3,5,7,9,11\}$ in propositional logic.

$$
P(3) \wedge P(5) \wedge P(7) \wedge P(9) \wedge P(11)
$$

What is its truth value?

Converting From Quantified Predicates to Propositional Logic

Example 2:

Let $P(x): x$ is a prime number, $x \in \mathbb{Z}$
Express $\neg \forall x P(x), x \in\{3,5,7,9,11\}$ in propositional logic.

$$
\begin{aligned}
& \neg(P(3) \wedge P(5) \wedge P(7) \wedge P(9) \wedge P(11)) \\
\equiv & \neg P(3) \vee \neg P(5) \vee \neg P(7) \vee \neg P(9) \vee \neg P(11)
\end{aligned}
$$

What is its truth value?

Converting From Quantified Predicates to Propositional Logic

Example 3:

Let $P(x): x$ is a prime number, $x \in \mathbb{Z}$
Express $\exists x \neg P(x), x \in\{3,5,7,9,11\}$ in propositional logic.

$$
\neg P(3) \vee \neg P(5) \vee \neg P(7) \vee \neg P(9) \vee \neg P(11)
$$

Same proposition as $\neg \forall x P(x), x \in\{3,5,7,9,11\}$! Generalized De Morgan's Laws

Converting From English to Quantified Predicates

Example 1: Express the following statement using Logic

"Some people in this class have seen Star Wars"

1. What are our predicates and their domains?
$S(x): x$ has seen Star Wars, $x \in$ People
2. What is our domain?

People in this class
2b. Does our domain create new predicates?

$$
\text { Yes! } C(x): x \text { is in this class, } x \in \text { People }
$$

3. What quantifier do we use?

Converting From English to Quantified Predicates

Example 1: Express the following statement using Logic

"Some people in this class have seen Star Wars"

Putting it all together:

```
S(x): x has seen Star Wars, x}\in\mathrm{ People
C(x): x is in this class, x\in People
```

$$
\exists x(C(x) \wedge S(x)), x \in \text { People }
$$

Converting From English to Quantified Predicates

Example 2: Express the following statement using Logic
"All people in this class who have seen Star Wars think it's great"

1. What are our predicates and their domains?
$S(x): x$ has seen Star Wars, $x \in$ People
2. What is our domain?

People in this class
2b. Does our domain create new predicates?

$$
\text { Yes! } C(x): x \text { is in this class, } x \in \text { People }
$$

3. What quantifier do we use?
$\forall x$

Converting From English to Quantified Predicates

Example 2: Express the following statement using Logic

"All people in this class who have seen Star Wars think it's great"

Putting it all together:

```
S(x): x has seen Star Wars, x}\in\mathrm{ People
G(x): x thinks Star Wars is great, x People
C(x): x is in this class, x\in People
```

$$
\forall x((C(x) \wedge S(x)) \rightarrow G(x)), x \in \text { People }
$$

Converting From Quantified Predicates to English

Example 1: Express the following statement in English

$$
\begin{gathered}
" \forall x(C(x) \rightarrow(P(x) \wedge J(x))), x \in \text { People" } \\
\text { Where } J(x): x \text { knows Java } \\
P(x): x \text { knows Python } \\
C(x): x \text { is in this class }
\end{gathered}
$$

Everyone in this class knows Python and Java

Converting From Quantified Predicates to English

Example 2: Express the following statement in English

$$
\begin{gathered}
\text { " } \forall x(C(x) \wedge P(x) \wedge J(x)), x \in \text { People" } \\
\text { Where } J(x): x \text { knows Java } \\
P(x): x \text { knows Python } \\
C(x): x \text { is in this class }
\end{gathered}
$$

All people are in this class and know
Python and Java

Converting From Quantified Predicates to English

Example 3: Express the following statement in English

$$
\begin{gathered}
" \exists x(C(x) \rightarrow(P(x) \wedge J(x))), x \in \text { People" } \\
\text { Where } J(x): x \text { knows Java } \\
P(x): x \text { knows Python } \\
C(x): x \text { is in this class }
\end{gathered}
$$

For some person, if they are in this class, then they know Python and Java

Converting From Quantified Predicates to English

Example 4: Express the following statement in English

$$
\begin{gathered}
\text { " } \exists x(C(x) \wedge P(x) \wedge J(x)), x \in \text { People" } \\
\text { Where } J(x): x \text { knows Java } \\
P(x): x \text { knows Python } \\
C(x): x \text { is in this class }
\end{gathered}
$$

Someone in this class knows Python and Java

Converting From English to Nested Quantifiers

Example 1: Express the following statement using Logic

$$
\text { If } x<y \text {, then } a x<a y
$$

1. What are our predicates and their domains?

$$
P(x, y): x<y, x, y \in \mathbb{R} . Q(a, x, y): a x<a y, x, y, a \in \mathbb{R}
$$

2. What is our domain?

R
2b. Does our domain create new predicates?
No.
3. What quantifier(s) do we use?

$$
\forall x, \forall y, \forall a
$$

Converting From English to Quantified Predicates

Example 1: Express the following statement using Logic

$$
\text { If } x<y \text {, then } a x<a y
$$

Putting it all together:

$$
\begin{aligned}
& P(x, y): x<y, x, y \in \mathbb{R} . \\
& Q(a, x, y): a x<a y, x, y, a \in \mathbb{R}
\end{aligned}
$$

$$
\forall x \forall y \forall a(P(x, y) \rightarrow Q(a, x, y)), x, y, a \in \mathbb{R}
$$

Note: The truth value of this statement is false. For this statement to be true, a needs to be positive!

Converting From English to Nested Quantifiers

Example 2: Express the following statement using Logic
"The difference of two positive integers is not necessarily positive"

1. What are our predicates and their domains?

$$
P(x, y): x-y>0, x, y \in \mathbb{R} . Q(x): x>0, x \in \mathbb{R}
$$

2. What is our domain?
\mathbb{Z}
2b. Does our domain create new predicates?
No.
3. What quantifier(s) do we use?

$$
\exists x, \exists y
$$

Converting From English to Nested Quantifiers

Example 2: Express the following statement using Logic

"The difference of two positive integers

 is not necessarily positive"Putting it all together:

$$
\begin{aligned}
& P(x, y): x-y>0, x, y \in \mathbb{R} \\
& Q(x): x>0, x \in \mathbb{R}
\end{aligned}
$$

$$
\exists x \exists y(Q(x) \wedge Q(y) \wedge \neg P(x, y)), x, y \in \mathbb{Z}
$$

Converting From Nested Quantifiers to English

Example 1: Express the following statement in English

$$
" \exists x \forall y((C(x) \wedge C(y)) \rightarrow F(x, y)), x, y \in \text { People" }
$$

Where $C(x): x$ is in this class, $x \in$ People $F(x, y): x$ and y are friends, $x, y \in$ People

Someone in this class is friends with everyone else in this class

Converting From Nested Quantifiers to English

Example 2: Express the following statement in English

Where $C(x): x$ is in this class, $x \in$ People $F(x, y): x$ and y are friends, $x, y \in$ People

Everyone in this class is friends with everyone in this class

Converting From Nested Quantifiers to English

Example 3: Express the following statement in English

$$
\begin{gathered}
" \exists x \exists y(C(x) \wedge C(y) \wedge F(x, y)), x, y \in \text { People" } \\
\text { Where } C(x): x \text { is in this class, } x \in \text { People } \\
F(x, y): x \text { and } y \text { are friends, } x, y \in \text { People }
\end{gathered}
$$

Two people in this class are friends.

Note: the two people don't have to be different, they could be the same person

Converting From Nested Quantifiers to English

Example 4: Express the following statement in English

$$
\begin{gathered}
" \forall x(C(x) \rightarrow \exists y(C(y) \wedge F(x, y))), x, y \in \text { People" } \\
\text { Where } C(x): x \text { is in this class, } x \in \text { People } \\
F(x, y): x \text { and } y \text { are friends, } x, y \in \text { People }
\end{gathered}
$$

Everyone in this class is friends with someone in this class

