Quantification

From last time:

Definition: Proposition

A declarative sentence that is either true (T) or false (F), but not both.

- Tucson summers never get above 100 degrees
- If the doorbell rings, then my dog will bark.
- You can take the flight if and only if you bought a ticket
- But NOT $x<10$

Why do we want use variables?

- Propositional logic is not always expressive enough
- Consider: "All students like summer vacation"
- Should be able to conclude that "If Joe is a student, he likes summer vacation".
- Similarly, "If Rachel is a student, she likes summer vacation" and so on.
- Propositional Logic does not support this!

Predicates

Definition: Predicate (a.k.a. Propositional Function)

A statement that includes at least one variable and will evaluate to either true or false when the variables(s) are assigned value(s).

- Example:

$$
\begin{aligned}
& S(x):(-10<x) \wedge(x<10) \\
& E(a, b): a \text { eats } b
\end{aligned}
$$

- These are not complete!

Predicates

Definition: Domain (a.ka. Universe) of Discourse

The collection of values from which a variable's value is drawn.

- Example:

$$
\begin{aligned}
& S(x):(-10<x) \wedge(x<10), x \in \mathbb{Z} \\
& E(a, b): a \text { eats } b, a \in \text { People, } b \in \text { Vegetables }
\end{aligned}
$$

- In This Class: Domains may NOT hide operators
- OK: Vegetables
- Not-OK: Raw Vegetables
(Vegetable $\wedge \neg$ Cooked)

Predicates

$$
S(x):(-10<x) \wedge(x<10), x \in \mathbb{Z}
$$

$E(a, b): a$ eats $b, a \in$ People, $b \in$ Vegetables

- Can evaluate predicates at specific values (making them propositions):
- What is $E(J o e$, Asparagus $)$?
- What is $S(0)$?

Combining Predicates with Logical Operators

- In $E(a, b): a$ eats $b, a \in$ people, $b \in$ vegetables, change the domain of b to "raw vegetables".
- $E(a, b)$: a eats $b, a \in$ people, $b \in$ vegetables
- $C(b): b$ is cooked, $b \in$ vegetables
- Combining the two:
- $E(a, b) \wedge \neg C(b), a \in$ people, $b \in$ vegetables

Quantification

- Idea: Establish truth of predicates over sets of values.
- Two common generalizations:
- Universal Quantification ($\forall x P(x), x \in D$)
- Considers all values from the domain of discourse
- Existential Quantification ($\exists x S(x), x \in D)$
- Considers one or more values form the domain of discourse

Note: Do not use the books non-standard \exists !x notation ("uniqueness quantifier", Rosen 8/e p.46)

Quantifications in Propositional Logic

- Universal Quantification
- $\forall x P(x), x \in D \equiv P\left(d_{0}\right) \wedge P\left(d_{1}\right) \wedge P\left(d_{2}\right) \wedge \ldots$
- Existential Quantification
- $\exists x S(x), x \in D \equiv S\left(d_{0}\right) \vee S\left(d_{1}\right) \vee S\left(d_{2}\right) \vee \ldots$

Evaluating Quantified Predicates

- Universal Quantification:

Universal quantification of $P(x), \forall x P(x)$, is the statement " $P(x)$ holds for all objects x in the domain of discourse"
$\forall x P(x)$ is true only when $P(x)$ is true for every x in the domain, and false otherwise.

- Example 1:
- $Q(x): x=x^{2}, x \in \mathbb{R}$
$Q(-1)=$ False,
- $\forall x Q(x), x \in\{-1,0,1\}$?
$-1 \neq(-1)^{2}$
- A value x for which $P(x)$ is false is a
counterexample $\forall x P(x)$

Evaluating Quantified Predicates

- Universal Quantification:

Universal quantification of $P(x), \forall x P(x)$, is the statement " $P(x)$ holds for all objects x in the domain of discourse"
$\forall x P(x)$ is true only when $P(x)$ is true for every x in the domain, and false otherwise.

- Example 2:
- $P(x, y): x+y$ is even, $x, y \in \mathbb{Z}$
- $\forall x \forall y P(x, y), x, y \in \mathbb{Z}^{\text {odd }} \quad$ True! (Easy to prove)

Evaluating Quantified Predicates

- Existential Quantification:

Existential quantification of $P(x), \exists x P(x)$, is "There exists an element x in the domain of discourse such that $P(x)$ "
$\exists x P(x)$ is true if at least one element x in the domain such that $P(x)$ is true

- Example 1:
- $Q(x): x=x^{2}, x \in \mathbb{R}$
- $\exists x Q(x), x \in\{-1,0,1\}$?
$Q(0)=$ True,
$0 \neq 0^{2}$

Evaluating Quantified Predicates

- Existential Quantification:

Existential quantification of $P(x), \exists x P(x)$, is "There exists an element x in the domain of discourse such that $P(x)$ "
$\exists x P(x)$ is true if at least one element x in the domain such that $P(x)$ is true

- Example 2:
- $P(x, y): x+y$ is even, $x, y \in \mathbb{Z}$
- $\exists x \exists y P(x, y), x, y \in \mathbb{Z}^{\text {odd }}$

True! Universal quantifier covers existential

Examples: Converting from English to
 Quantified Predicates

Example: Universal Quantification

- Consider this conversational English statement:

Every actor in The Office is great.

- How can we express that statement in logic notation?
- - WARNING - -

Several INCORRECT versions follow...
Only the last version is correct!

Example: Universal Quantification

- Consider this conversational English statement:

Every actor in The Office is great.

- How can we express that statement in logic notation?

$$
\begin{aligned}
& \text { Let } P(x) \text { : Actor } x \text { is great, } x \in \text { People } \\
& \forall x P(x), x \in \text { People }
\end{aligned}
$$

Stilted English: For every person x, x is a great actor. Conversationally: All people are great actors. PROBLEM: This is not quite the desired meaning IDEA: Let's focus the domain!

Example: Universal Quantification

- Attempt \#2: Every actor in The Office is great.

Let $P(x)$: Actor x is great, $x \in$ People who act in The Office
$\forall x P(x), x \in$ People who act in the Office

Stilted English: For every person x who acts in The Office, x is a great actor.
Conversationally: All actors in the Office are great.

PROBLEM: The domain has a hidden predicate
IDEA: Let's create a new predicate.

Example: Universal Quantification

- Attempt \#3: Every actor in The Office is great.

Let $P(x)$: Actor x is great, $x \in$ People
Let $Q(x): x$ was in The Office, $x \in$ People

$$
\forall x(P(x) \wedge Q(x)), x \in \text { People }
$$

Stilted English: For every person x, x is in The Office and x is a great actor.
Conversationally: All people are in the Office and are great. PROBLEM: If true, implies that all people are in The Office! IDEA: Try a different compound predicate

Example: Universal Quantification

- Attempt \#4: Every actor in The Office is great.

Let $P(x)$: Actor x is great, $x \in$ People
Let $Q(x): x$ was in The Office, $x \in$ People

$$
\forall x(Q(x) \rightarrow P(x)), x \in \text { People }
$$

Stilted English: For every person x, if x was in The Office, then x is a great actor.
Conversationally: Every actor in the Office is great.
PROBLEM: Isn't $P(x)$, really two predicates in one?
IDEA: Break it apart
[Why not $P(x) \rightarrow Q(x)$? That says all great actors are in the office]

Example: Universal Quantification

- Attempt \#5: Every actor in The Office is great.

Let $P(x): x$ is an actor, $x \in$ People
Let $A(x)$: x is a great actor, $x \in$ People
Let $Q(x): x$ was in The Office, $x \in$ People

$$
\forall x((Q(x) \wedge P(x)) \rightarrow A(x)), x \in \text { People }
$$

Stilted English: For every person x, if x is an actor and was in The Office, then x is a great actor.
Conversationally: Every actor in the Office is great.

- -SUCCESS! - -
(This is the version to learn!)

Implicit Quantification

- The "all" can be implicit in the English statement
- Example:
- Adding an odd \# to itself produces an even \#
$O(x): x$ is odd, $x \in \mathbb{R}$
$E(x): x$ is even, $x \in \mathbb{R}$
$\forall x(O(x) \rightarrow E(x+x)), x \in \mathbb{Z}$
$\forall x(O(x) \rightarrow \overline{O(x+x)}), x \in \mathbb{Z}$

Note the implicit \forall is implicit in the sentence

Example: Existential Quantification

- Consider this conversational English statement:

At least one breed of dog is cute.

- How can we express that statement in logic notation?

Let $C(x): x$ is cute, $x \in$ Dog Breeds
$\exists x C(x), x \in$ Dog Breeds

English: There is at least one dog breed x such that x is cute.

Example: Existential Quantification

- Express this more specific statement in logic:

Some of the large fluffy dog breeds are cute.

Let $L(x): x$ is large, $x \in$ Dog Breeds
Let $F(x): x$ is fluffy, $x \in \operatorname{Dog}$ Breeds
Let $C(x): x$ is cute, $x \in$ Dog Breeds
$\exists x(L(x) \wedge F(x) \wedge C(x)), x \in$ Dog Breeds
These alternatives don't work! Why?
$\exists x(L(x) \wedge F(x)) \rightarrow C(x), x \in$ Dog Breeds
$\exists x(L(x) \wedge C(x)) \rightarrow F(x), x \in$ Dog Breeds

Example: Existential Quantification

- Express this statement in logic:

Every last one of the large fluffy dog breeds are cute.
Let $L(x): x$ is large, $x \in$ Dog Breeds
Let $F(x): x$ is fluffy, $x \in$ Dog Breeds
Let $C(x): x$ is cute, $x \in$ Dog Breeds

$$
\forall x[(L(x) \wedge F(x)) \rightarrow C(x)], x \in \text { Dog Breeds }
$$

If a dog is both large and fluffy, then it is cute.
(vs. $\ldots \wedge C(x)$: All dog breeds are large, fluffy and cute
Typically \forall pairs with \rightarrow and \exists goes with \wedge

Nested Quantifiers

- Sometimes we may need to use multiple quantifiers
- We can't express "Everybody loves someone" using a single quantifier.
- Suppose predicate loves (x, y) : "Person x loves person y "

Nested Quantifiers

- loves (x, y) : "Person x loves person y "
- The four possible nestings:
- $\forall x \forall y \operatorname{loves}(x, y)$

Same quantifiers

- $\exists x \exists y \operatorname{loves}(x, y)$
- $\exists x \forall y \operatorname{loves}(x, y)$

Mixed quantifiers

- $\forall x \exists y \operatorname{loves}(x, y)$

Evaluating Nested Quantifiers of the Same Type

- Example: Ioves (x, y) : "Person x loves person y "
- $\forall x \forall y \operatorname{loves}(x, y)$
- "Everyone loves everyone".
- $\exists x \exists y \operatorname{loves}(x, y)$
- "There is someone who loves someone else" (or possibly themself!)

Evaluating Mixed Quantifiers

- Example: Ioves (x, y) : "Person x loves person y "
- $\exists x \forall y \operatorname{loves}(x, y)$
- "There is someone who loves everyone"
- $\forall x \exists y \operatorname{loves}(x, y)$
- "Everyone loves at least one person (possibly themself!)"

Evaluating Mixed Quantified

- Distinguishing $\exists x \forall y S(x, y)$ from $\forall i \exists k T(i, k)$
- $\exists x \forall y S(x, y)$ - "There exists an x such that, for every $y, S(x, y)$ is true."
- Somewhere in x 's domain is an x that can be paired with any y 's domain to make $S(x, y)$ true.
- $\forall i \exists k T(i, k)$ - "For any i there exists a k such that $T(i, k)$ is true.
- No matter which i is selected, we can find some k to pair with the i to make $T(i, k)$ true. (Note that the k may vary with the i)

Evaluating Mixed Quantified

- Example:
- Given $P(x, y): x-y=0, x, y \in \mathbb{Z}$
- Evaluate: $\exists x \forall y P(x, y)$

Evaluating Mixed Quantified

- Example:
- Given $P(x, y): x-y=0, x, y \in \mathbb{Z}$
- Evaluate: $\exists x \forall y P(x, y)=$ False
- (No such magical integer x exists!)

x	y	$P(x, y)$
0	$:$	\vdots
0	\vdots	\vdots
0		F
0	-1	T
0	0	F
0	1	F
0	\vdots	\vdots
0	\vdots	
0		

Evaluating Mixed Quantified

- Example:
- Given $P(x, y): x-y=0, x, y \in \mathbb{Z}$
- Evaluate: $\exists x \forall y P(x, y)=$ False
- Evaluate: $\forall x \exists y P(x, y)=$ True
- (No matter the x, there's an integer y $(y=x)$ that makes $P(x, y)$ true.)

x	y	$P(x, y)$
-3	-3	T
-2	-2	T
-1	-1	T
0	0	T
1	1	T
2	2	T
3	3	T

Negation of Quantified Expressions

- Remember De Morgan's Laws for Propositions? Well...

Definition: Generalized De Morgan's Laws

The Generalized De Morgan's Laws are the pair of equivalences:

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists \neg P(x) \\
& \neg \exists x P(x) \equiv \forall \neg P(x)
\end{aligned}
$$

Demonstration: $\neg \forall x P(x) \equiv \exists x \neg P(x)$

- Reminder:

$$
\begin{aligned}
& \forall x S(x), x \in D \equiv S\left(d_{1}\right) \wedge S\left(d_{2}\right) \wedge S\left(d_{3}\right) \ldots \\
& \exists x S(x), x \in D \equiv S\left(d_{1}\right) \vee S\left(d_{2}\right) \vee S\left(d_{3}\right) \ldots
\end{aligned}
$$

Demonstration: $\neg \forall x P(x) \equiv \exists x \neg P(x)$

- Let $S(x): x$ is cute, $x \in D$. Let $D=\{$ all dog breeds $\}$

$$
\begin{aligned}
\forall x S(x), x \in D & \equiv S\left(d_{1}\right) \wedge S\left(d_{2}\right) \wedge S\left(d_{3}\right) \ldots \\
\neg \forall x S(x), x \in D & \equiv \neg\left(S\left(d_{1}\right) \wedge S\left(d_{2}\right) \wedge S\left(d_{3}\right) \ldots\right) \\
& \equiv \neg S\left(d_{1}\right) \vee \neg S\left(d_{2}\right) \vee \neg S\left(d_{3}\right) \ldots \\
& \equiv \exists x \neg S(x), x \in D \\
\exists x S(x), x \in D & \equiv S\left(d_{1}\right) \vee S\left(d_{2}\right) \vee S\left(d_{3}\right) \ldots
\end{aligned}
$$

Negation of Nested Quantifiers

- Apply De Morgan's Laws from left to right
- Example:

$$
\begin{aligned}
& \neg(\exists x \forall y(G(x) \vee \neg H(y))) \\
& \equiv \forall x \neg(\forall y(G(x) \vee \neg H(y))) \\
& \text { [General DeMorgan] } \\
& \equiv \forall x \exists y \neg(G(x) \vee \neg H(y)) \\
& \text { [General DeMorgan] } \\
& \equiv \forall x \exists y(\neg G(x) \wedge H(y))
\end{aligned}
$$

Expressing "Exactly one..." Statements

- Consider the conversational (\& correct!) English statement

Only one citizen of Montana is a member of the U.S. House of Representatives

- And consider this awkward but useful rewording:

A member of the US House of Representatives exists in the set of citizens of Montana, and, if anyone in Montana is a member of the House, that person is the representative

Expressing "Exactly one..." Statements

- That rewording is useful because it can be directly expressed logically:
$R(x): x$ is a member of the US House of
Representatives, $x \in$ People

This domain should be simplified, but using it makes the logic easier to read (for now)

Expressing "Exactly one..." Statements

- That rewording is useful because it can be directly expressed logically:
$R(x): x$ is a member of the US House of
Representatives, $x \in$ People
$\exists x(R(x) \wedge \forall y[R(y) \rightarrow(y=x)]), x, y \in$ Citizens of Montana
- Interpretation: (At least one) \wedge (No more than one)
- \therefore Impossible for there to be two representatives!

Expression "Exactly two..." Statement

- Key observation:

Exactly $2 \equiv$ At least $2 \wedge$ At most 2
$(n=2) \equiv(n \geq 2) \wedge(n \leq 2)$

- Awkward English:

At least two citizens of Montana are U.S. Senators, and at most two citizens of Montana are U.S. Senators.

- Better:

Exactly two citizens of Montana are U.S. Citizens

Expression "Exactly two..." Statement

- Consider the two halves separately:

1. "At least two citizens of Montana are U.S. Senators"
2. "At most two citizens of Montana are U.S. Senators"

Expressing "At least two"

- How do we express "At least two citizens of Montana are U.S. Senators"? Let $S(x): x$ is a U.S. Senator, $x \in$ People
- Why doesn't this work?
- $\exists x \exists y(S(x) \wedge S(y)), x, y \in$ Citizens of Montana (\mathbf{x}, \mathbf{y} could be identical)
- Correct version:
- $\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y)), x, y \in$ Citizens of Montana

Expression "Exactly two..." Statement

- Consider the two halves separately:

1. "At least two citizens of Montana are U.S. Senators" $S(x): x$ is a U.S. Senator, $x \in$ People $\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y))$,
$x, y \in$ Citizens of Montana
2. "At most two citizens of Montana are U.S. Senators"

Expressing "At most two"

- How do we express "At most two citizens of Montana are U.S. Senators"? Let $S(x): x$ is a U.S. Senator, $x \in$ People
- Start with "at most one":
- $\forall x \forall y(S(x) \wedge S(y)) \rightarrow(x=y)$
- Extended to 2 (i.e. "at most two"):
 If x, y, z are all U.S. Senators...
- $\forall x \forall y \forall z((S(x) \wedge S(y) \wedge \widehat{S(z)) \rightarrow}$

$$
((x=y) \vee(x=z) \vee(y=z)),
$$

$x, y \in$ Citizens of Montana
... then there is at least one pair which are the

Expression "Exactly two..." Statement

- Consider the two halves separately:

1. "At least two citizens of Montana are U.S. Senators" $S(x): x$ is a U.S. Senator, $x \in$ People $\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y))$, $x, y \in$ Citizens of Montana
2. "At most two citizens of Montana are U.S. Senators"

$$
\begin{aligned}
& \forall x \forall y \forall z((S(x) \wedge S(y) \wedge S(z)) \rightarrow \\
& (x=y \vee y=z \vee x=z)) \\
& x, y, z \in \text { Citizens of Montana }
\end{aligned}
$$

Expression "Exactly two..." Statement

- Finally, AND together

$$
\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y))
$$

- and

$$
\begin{aligned}
& \forall x \forall y \forall z((S(x) \wedge S(y) \wedge S(z)) \rightarrow \\
& \quad(x=y \vee y=z \vee x=z))
\end{aligned}
$$

Expression "Exactly two..." Statement

- Finally, AND together

$$
\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y))
$$

- and

$$
\begin{aligned}
& \forall x \forall y \forall z((S(x) \wedge S(y) \wedge S(z)) \rightarrow \\
& \quad(x=y \vee y=z \vee x=z)) \\
& \exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y) \wedge \\
& \forall z[S(z) \rightarrow(z=x \vee z=y)]) \\
& x, y, z \in \text { Citizens of Montana }
\end{aligned}
$$

Why is the second half simplified?

Reminders

- Homework 2 due this Friday (06/19)
- Grades for Homework 1 should be posted before Friday
- Quiz 1 this Tuesday (on Logic)

