CSc 245 Discrete Structures - Summer 2020
 Quiz \#3

Due: June 30th, $\underset{\text { Solutions }}{2020 \text { by } 11: 59 \mathrm{pm}(\mathrm{MST})}$
A correct proof will:

1. State proof type
2. Clearly state assumptions appropriate for stated proof type
3. Make justified steps toward conclusion. Justify steps with:
(a) Math rules and definitions
(b) Widely accepted, proven theorems (e.g. theorems from the book)
(c) Previously proved conjectures (e.g. from lecture or prior assignments).
4. Clearly state the result/conclusion
5. Restate the conjecture at the end of the conclusion
6. Prove that if $3 x+5$ is even, then x is odd.

Proof (Contraposition): Assume x is even.
By definition, $\exists k \in \mathbb{Z}$ s.t. $x=2 k$.
Substituting $2 k$ for x in $3 x+5$, we get $3(2 k)+5=6 k+5=2(3 k+4)+1$
$2(3 k+4)+1$ can be rewritten as $2 m+1$ where $m=3 k+4$, which is the form of an odd number.
m it is the product of two integers (3 and k) summed with another integer (4), which will be an integer.
Thus, $3 x+5$ is odd and we have shown that if x is even, then $3 x+5$ is odd.
Therefore, by controposition, if $3 x+5$ is even, then x is odd.
2. Prove that if x is even and y is odd, then $4 \mid\left(y\left(x^{2}+2\right)-6\right)$.

Proof (Direct): Assume x is even and y is odd.
By definition, $\exists k, j \in \mathbb{Z}$ s.t. $x=2 k$ and $y=2 j+1$
Substituting for x and y in $y\left(x^{2}+2\right)-6$, we get:
$(2 j+1)\left((2 k)^{2}+2\right)-6$
$=(2 j+1)\left(4 k^{2}+2\right)-6$
$=8 j k^{2}+4 k^{2}+4 j+2-6$
$=8 j k^{2}+4 k^{2}+4 j+-4$
$=4\left(2 j k^{2}+k^{2}+j+-1\right)$
Thus, since 4 can be factored out of the equation, then the equation is divisible by 4 .
Therefore, if x is even and y is odd, then $4 \mid\left(y\left(x^{2}+2\right)-6\right)$.

