CSc 245 Discrete Structures - Summer 2020
 Quiz \#6

Due Tuesday July 28th at 11:59pm (MST)
Solutions

1. (4 points) Is the sequence $3,2,1,0,3,2,1,0,3,2,1,0 \ldots$ countable? Justify your answer.

No it is not countable. The function $f(x)=3-x \% 4$ maps the integers to the sequence but this function is not invertable because there are only 4 values in the range. Therefore, if we inverted it, each of those 4 integers would map to many numbers. Thus it is not countable.
2. (6 points) Prove using induction: $\sum_{i=1}^{n} i 2^{i}=(n-1) 2^{n+1}+2$
$\underline{\text { Proof (weak induction): }}$
Base Case: $\mathrm{n}=1$. $\sum_{i=1}^{1} i 2^{i}=1 \cdot 2^{1}=2=(1-1) 2^{1+1}+2$. So the Base Case holds.
Inductive Case: If $\sum_{i=1}^{k} i 2^{i}=(k-1) 2^{k+1}+2$, then $\sum_{i=1}^{k+1} i 2^{i}=((k+1)-1) 2^{(k+1)+1}+2=k 2^{k+2}+2$.
We know by definition of summations, that $\sum_{i=1}^{k+1} i 2^{i}=\sum_{i=1}^{k} i 2^{i}+(k+1) 2^{k+1}$
By the inductive hypothesis:
$\sum_{i=1}^{k} i 2^{i}+(k+1) 2^{k+1}=(k-1) 2^{k+1}+2+(k+1) 2^{k+1}$
$=k 2^{k+1}-2^{k+1}+2+k 2^{k+1}+2^{k+1}$
$=2\left(k 2^{k+1}\right)+2$
$=k 2^{k+2}+2$
This is what we were trying to show.
Therefore, $\sum_{i=1}^{n} i 2^{i}=(n-1) 2^{n+1}+2$.

