Recurrence Relations

Recurrence Relations \& Recursion

Computer Science has recursion
Mathematics has recurrence relations.

Example:

$s_{n}=s_{n-1}-3, s_{1}=13, \forall n \in \mathbb{Z}$ where $1 \leq n \leq 5$ defines the sequence $13,10,7,4,1$

The Fibonacci sequence is defined by the recurrence

$$
f_{n}=f_{n-1}+f_{n-2}
$$

Where $f_{0}=0$ and $f_{1}=1$

Recurrence Relations

Definition: Recurrence Relation

A recurrence relation for the sequence a_{0}, a_{1}, \ldots is an equation that expresses a_{k} in terms of one or more of its preceding sequence members, one or more of which are initial conditions for the sequence

Example:

The number of subsets of a set of n elements:

$$
\begin{array}{ll}
s(0)=1 & \text { is the initial condition } \\
s(n)=2 \cdot s(n-1) & \text { is the recurrence relation }
\end{array}
$$

Recall: This is the cardinality of a power set.

Solving Recurrence Relations

Given a recurrence relation, can an equivalent closedform (non-recurrence) expression (a.ka. an explicit formula) be produced?

If so, the closed-form expression is the solution to the recurrence relation

Utility: Solving recurrence relations is a common task is algorithm analysis

Linear Homogeneous Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation With
Constant Coefficients (LHRRWCC) of Degree k
A LHRRWCC of degree k has the form:

$$
\begin{aligned}
& R(n)=c_{1} R(n-1)+c_{2} R(n-2)+\cdots+c_{k} R(n-k) \\
& \text { where } c_{i} \in \mathbb{R} \text { and } c_{k} \neq 0
\end{aligned}
$$

Example:
$S(n)=2 \cdot S(n-1)$ is a LHRRWCC of degree 1
$f_{n}=f_{n-1}+f_{n-2}$ is a LHRRWCC of degree 2
$A(x)=A(x-2)$ is alos a LHRRWCC of degree 2

Solving LHRRWCCs of Degree 2

Assumption: $R(n)=w^{n}$ where w is a non-zero constant. (Why? We'll get a nice quadratic expression at the end!)

If $R(n)=w^{n}$, then $R(n-1)=w^{n-1}$, etc.
Thus: $R(n)=c_{1} R(n-1)+c_{2} R(n-2)+\cdots+c_{k} R(n-k)$
becomes: $w_{n}=c_{1} w^{n-1}+c_{2} w^{n-2}+\cdots+c_{k} w^{n-k}$
As our degree is 2 , we need only terms $k=1$ and $k=2$: $w^{n}=c_{1} w^{n-1}+c_{2} w^{n-2}$
Divide through by $w^{n-2} \Rightarrow w^{2}=c_{1} w^{1}+c_{2}$
Rearrange:

$$
\Rightarrow w^{2}-c_{1} w^{1}-c_{2}=0
$$

Solving LHRRWCCs of Degree 2

Theorem: Assume a characteristic equation $w^{2}-c_{1} w-c_{2}=0$ with $c_{1}, c_{2} \in \mathbb{R}$ and roots r_{1} and r_{2} such that $r_{1} \neq r_{2}$. The sequence $\{R(n)\}$ is a solution to $R(n)=c_{1} R(n-1)+c_{2} R(n-2)$ iff $R(n)=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ where $n \in \mathbb{Z}^{*}$ and $\alpha_{a}, \alpha_{2} \in \mathbb{R}$.

Proof: Rosen Sect. 8.2 p 542-3

Solution Procedure: LHRRWCCs of Degree 2

1. Identify $c_{1} \& c_{2}$ and create the characteristic equation $w^{2}-c_{1} w-c_{2}=0$
2. Insert the roots of the characteristic equation $\left(r_{1} \& r_{2}\right)$ into the closed-form expression $R(n)=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$
3. Using the initial conditions, create two equations in two unknowns (α_{1} and α_{2})
4. Solve for α_{1} and α_{2} to complete the solution

Example: Solving a LHRRWCC of Degree 2

Solve: $R(n)=3 R(n-1)-2 R(n-2)$
where $R(0)=200$ and $R(1)=220$
(1) From the recurrence, we see that $c_{1}=3$ and $c_{2}=-2$
\therefore Characteristic eq. Is $w^{2}-3 w-(-2)=w^{2}-3 w+2=0$
(2) Factor: $w^{2}-3 w+2=(w-2)(w-1)$.

It follows that the roots are: $r_{1}=2$ and $r_{2}=1$.
And so: $R(n)=\alpha_{1} 2^{n}+\alpha_{2} 1^{n}=\alpha_{1} 2^{n}+\alpha_{2}$
(3) Apply the initial conditions to $R(n)=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$:

$$
R(0)=\alpha_{1}+\alpha_{2}=200 \quad R(1)=2 \alpha_{1}+\alpha_{2}=220
$$

(4) Solve for the two unknowns: $\alpha_{1}=20$ and $\alpha_{2}=180$.

Thus the solution is $R(n)=20 \cdot 2^{n}+180 \cdot 1^{n}=20 \cdot 2^{n}+180$

"Divide \& Conquer" Recurrence Relations

- Background:
- "Divide and Conquer" is a military, political, and algorithmic tactic:
- Military: Disconnect one half of a battle group from the other, and the two halves are much easer to defeat
- Political: Force the liberal and conservative wings of a political party to squabble, and the other party finds its work to be more easily accomplished
- Algorithmic: Solving two halves of a problem (and combining the results to construct the original problem's answer) is often more efficient than solving the original problem directly

"Divide \& Conquer" Recurrence Relations

Example:
(1) Binary Search

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S\left(\frac{n}{2}\right)+k
\end{aligned}
$$

(2) Best Case of Quicksort
$Q(1)=1$
$Q(n)=Q\left(\frac{n}{2}\right)+Q\left(\frac{n}{2}\right)+n$
[Worst case of Quicksort: $Q(n)=Q(n-1)+n]$

Solving "Divide \& Conquer" Rec. Relations

"Find The Pattern" (a.k.a. Iterative (or Backward) Substitutions)
Example:

$$
S(1)=1
$$

$$
S(n)=S\left(\frac{n}{2}\right)+k
$$

$$
S\left(\frac{n}{2}\right)=S\left(\frac{n}{4}\right)+k \quad \Rightarrow \quad S(n)=S\left(\frac{n}{4}\right)+2 k
$$

$$
S\left(\frac{n}{4}\right)=S\left(\frac{n}{8}\right)+k \quad \Rightarrow \quad S(n)=S\left(\frac{n}{8}\right)+3 k
$$

$$
S\left(\frac{n}{8}\right)=S\left(\frac{n}{16}\right)+k \Rightarrow S(n)=S\left(\frac{n}{16}\right)+4 k
$$

(continues...)

Solving "Divide \& Conquer" Rec. Relations

In general: $S(n)=S\left(\frac{n}{2^{a}}\right)+a k$, where $a \geq 1, \quad a \in \mathbb{Z}$
[Simplifying assumption: n is a power of 2]
Let $n=2^{a}$; that is, $a=\log _{2} n$
$S(n)=S\left(\frac{n}{n}\right)+k \log _{2} n$
$S(n)=S(1)+k \log _{2} n$
$S(n)=1+k \log _{2} n$
$\therefore S(n)$ is $O\left(\log _{2} n\right)$
But ... do you believe?

Solving "Divide \& Conquer" Rec. Relations

Conjecture: $S(n)=k \cdot \log _{2} n+1$

$$
\left.\begin{array}{l}
\text { Proof (weak induction): } \\
\begin{array}{rl}
\text { Basis: } n=1 . S(1)=1=k \cdot 0+1=k \cdot \log _{2} 1+1
\end{array} \\
\begin{array}{rl}
\text { Inductive Step: If } S(j)=k \cdot \log _{2} j+1 \text { then } S(2 j)=k \cdot \log _{2}(2 j)+1 \\
S(2 j) & =S\left(\frac{2 j}{2}\right)+k \\
& =S(j)+k \\
& =k \cdot \log _{2} j+1+k \\
& =k\left(\log _{2} j+1\right)+1 \\
& =k\left(\log _{2} j+\log _{2} 2\right)+1 \\
& =k \cdot \log _{2}(2 j)+1
\end{array} \\
\text { Simplifying the Rec }
\end{array}\right] \text { By the Inductive I }
$$

Solving "Divide \& Conquer" Rec. Relations

Example: Worst Case of Quicksort

Recall: $Q(1)=1$, and $Q(n)=Q(n-1)+n$
$Q(n)=Q(n-1)+n$

$$
Q(n-1)=Q(n-2)+(n-1)
$$

$Q(n)=Q(n-2)+n+(n-1)$

$$
Q(n-2)=Q(n-3)+(n-2)
$$

$Q(n)=Q(n-3)+n+(n-1)+(n-2)$
Apparently, in general:

$$
Q(n)=Q(n-k)+\sum_{i=0}^{k-1}(n-i), k \in \mathbb{Z}^{+}
$$

Solving "Divide \& Conquer" Rec. Relations

If we continue, we'll reach $Q(n-k)=Q(1)$ when $k=n-1$

$$
\begin{aligned}
Q(n) & =Q(n-(n-1))+\sum_{i=1}^{(n-1)-1}(n-i) & & \text { Substituting } \\
& =Q(1)+\sum_{i=2}^{n} i & & \text { Simplifying } \\
& =1+\sum_{i=2}^{n} i & & \text { Combine Terms } \\
& =\frac{n(n+1)}{2} & & \text { By Gauss }
\end{aligned}
$$

And this shows why Quicksort is $O\left(n^{2}\right)$ in the worst case...
... But do you believe?

Solving "Divide \& Conquer" Rec. Relations

Conjecture: $Q(n)=\frac{n(n+1)}{2}$
Proof (weak induction):
Basis: $n=1 . Q(1)=1=\frac{2}{2}=\frac{1(1+1)}{2}$. Ok!
Inductive Step: If $Q(k)=\frac{k(k+1)}{2}$, then $Q(k+1)=\frac{(k+1)(k+2)}{2}$.
$Q(k+1)=Q(k)+(k+1)$
$=\frac{k(k+1)}{2}+(k+1)$
$=\frac{(k+1)(k+2)}{2} \quad$ After a bunch of algebra
Therefore, $Q(n)=\frac{k(k+1)}{2}$
By the Inductive Hypothesis

Extra Slides

Approximate Solutions to Rec. Relations

Theorem: (The Master Theorem) Given a recursive function of the form $T(n)=a \cdot T(n / b)+c \cdot n^{2}$, where:
$T(n)$ is an increasing function,
$n=b^{k}$,
k is an integer >0,
a is a real ≥ 1
b is an integer >1
c is a real >0, and
d is a real ≥ 0, then:

$$
f(n)= \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \cdot \log _{2} n\right) & \text { if } a=<b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Proof: Rosen

