Relations

Section 9.1, 9.3, 9.5, 9.6

Background

- Having collections of data: Good
- Knowing the connections between collections: Better!
- Example:
- Students - Courses
- Businesses - Email Adresses
- Dogs - Trees

Relations

Definition: (Binary) Relation

A binary relation from set X to Y is a subset of the
Cartesian Product of X (the domain) and Y (the codomain).

NOTE: a relation "on set W " \equiv "from set W to set W ".
Example:
$A=\{$ Leslie Knope, Jim Halpert, Michael Scott, Ann Perkins, Ben Wyatt $\}$
$B=\{$ Parks and Rec, The Office $\}$
$R=\{($ Leslie Knope, Parks and Rec), (JH, O), (MS, O), (AP, P\&R), (BW, P\&R) \}

Relations

Definition: Related

If $(x, y) \in R, x$ is related to $y(x R y)$

Example:

(Leslie Knope, Parks and Rec) $\in R$ (Leslie Knope R Parks and Rec) (Jim Halpert, Parks and Rec) $\notin R$ (Jim Halpert $\not R$ Parks and Rec)

Let $H=\{1,2,3,4,5,6\}$ and let R be a relation on H such that $x R y$ when $x \% y=0, x \neq y$
$R=\{(2,1),(3,1),(4,1),(5,1),(6,1),(4,2),(6,2),(6,3)\}$

Graph Representations of Relations

- Graphs:
- A set V of vertices (nodes) and a set E of pairs of vertices that represent an edge between those two vertices

$$
\begin{aligned}
& V=\{1,2,3,4,5\} \\
& E=\{(1,3),(1,2),(2,5),(4,5)\}
\end{aligned}
$$

Graph Representations of Relations

- Directed Graphs (Digraph):
- A set V of vertices (nodes) and a set E of pairs of vertices that represent an edge between those two vertices
- In edge $(a, b), a$ is the initial vertex and b is the terminal vertex

$$
\begin{aligned}
& V=\{1,2,3,4,5\} \\
& E=\{(1,3),(1,2),(2,5),(4,5)\}
\end{aligned}
$$

Graph Representations of Relations

- Example:
$A=\{$ Leslie Knope, Jim Halpert, Michael Scott, Ann Perkins, Ben Wyatt \}
$B=\{$ Parks and Rec, The Office $\}$
$R=\{($ Leslie Knope, Parks and Rec), (JH, O), (MS, O), (AP, P\&R), (BW, P\&R) \}

Graph Representations of Relations

- Example: $x \% y=0, x \neq y$

Recall: $H=\{1,2,3,4,5,6\}$

$$
R=\{(2,1),(3,1),(4,1),(5,1),(6,1),(4,2),(6,2),(6,3)\}
$$

Note: Vertices with just one outgoing edge are prime

Properties of Relations

Definition: Reflexivity

A relation R on set A is reflexive when $(a, a) \in R$, $\forall a \in A$

Example:

$\{1,2\} \times\{1,2\}=\{(1,1),(1,2),(2,1),(2,2)\}$

(A directed edge whose source is also the destination is a self-loop)

Properties of Relations

Definition: Symmetry
A relation R on set A is symmetric if $(a, b) \in R$
whenever $(b, a) \in R$, for $a, b \in A$
(All non-self-loop edges are 'back-and-forth')
Example:
$R=\{(1,1),(1,2),(2,1),(2,2)\}$ on $A=\{1,2\}$ is symmetric
$R=\{(a, c),(a, d),(c, a),(b, c)\}$ on $A=\{a, b, c, d\}$ is not symmetric ((d, a) and (c, b) are missing.)

Properties of Relations

Example: Graph Representation \& Symmetry

(Excepting self-loops, just have back-and-forth arrows)

$$
R=\{(a, c),(a, d),(c, a),(b, c)\}:
$$

(Easy to see that (d, a) and (c, b) are missing

Properties of Relations

Definition: Antisymmetry
A relation R on set A is antisymmetric if $(x, y) \in R$ and $x \neq y$, then $(y, x) \notin R, \forall x, y \in A$.
(No non-self-loop edges are 'back-and-forth')

Example:

$\{(3,4)\}$ on $\{3,4\}$ is antisymmetric $((4,3)$ is not present)
$\{(1,1),(3,1),(1,3)\}$ on $\{1,3\}$ is not antisymmetric
$\{(a, b),(a, d),(c, a),(b, c)\}$ is not
(Thus, relations may be neither symmetric nor antisymmetric.)

Properties of Relations

Example: Graph Representation \& Antisymmetry
$R=\{(a, c),(a, d),(c, a),(b, c)\}$ as a digraph
(The offending 'double edge' Is easy to see)

$R=\{(1,1),(2,2)\}$ on $\{1,2\}$
(both symmetric \& antisymmetric) as a digraph:

Properties of Relations

Definition: Transitivity

A relation R on set A is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, where $a, b, c \in A$

Example:
$R=\{(x, y),(x, z),(y, z),(z, x),(z, y)\}$ on $\{x, y, z\}$
$(x, y) \&(y, z) \Rightarrow(x, z)$, which is $\in R$
$(y, z) \&(z, y) \Rightarrow(y, y)$ which is not in R
$\therefore R$ is not transitive

Properties of Relations

Example:
$S=\{(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)\}$ on $\{4,5,6,7\}$
$(4,5) \&(5,6) \Rightarrow(4,6)$
$(4,5) \&(5,7) \Rightarrow(4,7)$
$(4,6) \&(6,7) \Rightarrow(4,7)$
$(5,6) \&(6,7) \Rightarrow(5,7)$

$\therefore S$ is transitive
(Note: Digraphs don't really help see transitivity)

Relational Composition Examples

- Three examples of creating relations from relations
- Example \#1: Set operators

Recall: A relation is a set of ordered pairs

$$
\begin{aligned}
\text { Let } A= & \{1,2,3\} \\
R= & \{(1,2),(1,3)\} \text { on } A \\
S= & \{(1,1),(2,3)\} \text { on } A \\
R \cup S= & \{(1,2),(1,3),(1,1),(2,3)\} \text { on } A \\
& \text { is also a relation on } A
\end{aligned}
$$

Relational Composition Examples

- Example \#2: Swapping content of ordered pairs $(1,2) \Rightarrow(2,1)$

Definition: Inverse

The inverse of a relation R, denoted R^{-1}, contains all of the ordered pairs of R with their components exchanged

That is: $R^{-1}=\{(b, a) \mid(a, b) \in R\}$

Relational Composition Examples

- Example \#3: Composites

Remember: $f \circ g=f(g(x))$

Definition: Composite

Let G be a relation from A to B, and F be a relation from B to C. The composite of F and $G, F \circ G$, is the relation of ordered pairs $(a, c), a \in A, c \in C$, such that $(a, b) \in G$ and $(b, c) \in F$, where $b \in B$

Example:

Let $X=\{(1, a),(2, b),(3, c)\}$
$Y=\{(1,2),(2,3),(1,3),(2,4)\}$
$X \circ Y=\{(1, b),(2, c),(1, c)\}$

Relational Composition Examples

- Example \#3: Composites (cont)

Example:
Let $C=\{(\alpha,-4),(\alpha,-2),(\beta,-6),(\gamma,-4)\}$
$D=\{(q, \beta),(x, \alpha),(x, \gamma)\}$
$C \circ D=\{(q,-6),(x,-4),(x,-2)\}$
(Note that $(x,-4)$ is not repeated; this is a set)

Definition: Complement

The complement of a relation R, denoted \bar{R}, is $\{(a, b) \mid(a, b) \notin R\}$

Matrix Representation of Relations

- We assume that relations are on just one set
- The 0-1 matrix representation of relation R on set A is $|A| \times|A|$, with both dimensions labeled identically. When $(a, b) \in R$, then matrix $[\mathrm{a}][\mathrm{b}]=1$. Else, matrix[a][b]=0

Example:

$$
R=\{(a, c),(a, d),(c, a),(b, c)\} \text { on }\{a, b, c, d\}
$$

$$
M=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llll}
a & b & c & d \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Matrix Representation of Relations

- Observation \#1: Detecting Reflexivity
- A relation is reflexive when its corresponding matrix representation has no 0's along the main diagonal

Example:

$$
R=\{(1,1),(1,2),(2,2)\} \text { on }\{1,2\}
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The main diagonal is all 1 's; $\therefore R$ is reflexive

Matrix Representation of Relations

- Observation \#2: Detecting Symmetry
- Let matrix M represent $R . R$ is symmetric when $m_{i j}=1$ iff $m_{j i}=1$ is true

Example:

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

When the relation is symmetric, the matrix is symmetric

Matrix Representation of Relations

- Observation \#3: Detecting Transitivity
- Let matrix M represent R. R is transitive when the non-zero elements of M^{2} (or of $M^{([2])}$) are also nonzero in M

Example:

Is $\{(1,1),(2,2),(2,3),(3,2)\}$ on $\{1,2,3\}$ transitive?

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

So, no, the relation is not transitive

Equivalence Relations

Definition: Equivalence Relation

A relation on set A is an equivalence relation if it is reflexive, symmetric, and transitive.

Example:

$A=\{2,3,4\}$. Let Q be a relation on A such that $a=b$,
$\forall a, b \in A$
Thus $Q=\{(2,2),(3,3),(4,4)\}$
Reflexive?
Symmetric?
Transitive?

Equivalence Relations

Example:

$B=\{-2,-1,0,1,2\}$. Let R be a relation on B such that $|a|=|b|, \forall a, b \in B$

Thus $R=\{(0,0),(1,1),(1,-1),(-1,1),(-1,-1)$,

$$
(2,2),(2,-2),(-2,2),(-2,-2)\}
$$

This is also an equivalence relation.

Equivalence Relations

So ... why are these called equivalence relations?
Recall:

$$
\begin{array}{r}
R=\{(0,0),(1,1),(1,-1),(-1,1),(-1,-1), \\
(2,2),(2,-2),(-2,2),(-2,-2)\}
\end{array}
$$

Note the "clusters" of 0's, 1's, and 2's. This gives a partition of the base set B :

$$
\{\{0\},\{-1,1\},\{-2,2\}\}
$$

Equivalence Relations

Definition: Equivalence Class

The equivalence relation R on set B, and an element $b \in B$, is $\{c \mid c \in B \wedge(b, c) \in R\}$ and is denoted [b]. (That is, the set of everything paired with \& on the right side of b in R

Example: (From previous slide)
$[1] \Rightarrow\{c \mid c \in B \wedge(1, c) \in R\}$
R contains $(1,1)$ and $(1,-1)$, so $[1]=\{1,-1\}$.

Partial Orders

- Consider scheduling the construction of a house.
- Example: foundation, then walls, then paint
- But what about bathroom tile and the kitchen sink?

Definition: Reflexive (a.k.a. Weak) Partial Order
A relation R on set A is a (reflexive/weak) partial order if it is reflexive, antisymmetric, and transitive.

Notation: $x \leq y$ means $(x, y) \in R$ when R is a partial order

Partial Orders

Example:

$$
S=\{(1,1),(1,2),(2,2),(3,1),(3,2),(3,3)\} \text { on }\{1,2,3\}
$$

Is S reflexive?
Antisymmetric?
Transitive?
$\therefore S$ is a week partial order

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right]
$$

(Note: A partially-ordered set is called a poset)

Partial Orders

Definition: Irreflexivity (of Relations)

A relation R on set A is irreflexive if $\forall a \in A,(a, a) \notin R$ (Note: Not the same as "not reflexive")

Definition: Irreflexive (a.k.a. Strict) Partial Order
A relation R on set A is a irreflexive partial order if it is irreflexive, antisymmetric, and transitive.
(Thus no self-loops allowed.)

Total Orders

Definition: Comparable

Let R be a weak partial order on set A. a and b are compatible if $a, b \in A$ and either $a \leq b$ or $b \leq a$.
(That is, $(a, b) \in R$ or $(b, a) \in R$

Definition: Total Order

A weak-partial-ordered relation R on a set A is a total order if every pair of elements $a, b \in A$ are comparable. (Or: A relation R on A is a total order if R is antisymmetric, transitive, and comparable.)

Total Orders

Example:

$S=\{(1,1),(1,2),(2,2),(3,1),(3,2),(3,3)\}$ on $\{1,2,3\}$

It is a partial order and the paris $(1,2),(3,1)$ and $(3,2)$ show that all elements are comparable. \therefore Total Order!

Let $T=\{(1,1),(1,3),(2,2),(2,3),(3,3)\}$ on $\{1,2,3\}$

Reflexive? Antisym? Transitive? $\quad \therefore$ Partial Order

But: 1 and 2 are not comparable; this is not a total order.

