Sequences and Strings
 4.3

Sequences

Definition: Sequence [1st Attempt]

An ordered list of items

Notation:

- Labels are lower-case letters
- Elements are subscripted: e_{1}, e_{2}, \ldots
- $\left\{e_{n}\right\} \Rightarrow e$ is an n-element sequence.

Example: Soup!
Cost sequence: $s=2,4,6,8,10, \ldots \quad$ (\$2 per can)
Soup Saturday: Buy 3 cans of soup, get on free!
$s^{\prime}=2,4,6,6,8,10,12,12 \ldots \quad$ (Not a set!)

Rules

Recall: $\sum_{i=1}^{n} 2 i \leftarrow$ Sequence defined by the rule 2 i

Example:

$s_{n}=2 n$ defines the original soup price sequence
$n^{2}+1, n \geq 0$ defines the infinite sequence
$1,2,5,10,17, \ldots$
More notation:
Infinite sequences:

1. Ellipses (as in $1,2,5,10,17, \ldots$)
2. $\left\{d_{n}\right\}_{n=1}^{\infty}$

Sequences and Functions

Definition: Sequence [Final Version]

A sequence is the ordered range of a function from a set of integers to some set S
Example:
$o(n)=2 n-1$ on the domain $\{1,2,3,4,5\}$ defines the sequence 1,3,5,7,9

As a relation: $\{(1,1),(2,3),(3,5),(4,7),(5,9)\}$
Range of $\{1,3,5,7,9\}$
(Thus, the "ordered range" wording)

Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)
In an arithmetic sequence, the common
difference $d=a_{n+1}-a_{n}$ is constant
Definition: Geometric Sequence (a.k.a. Geometric Progression)
In a geometric sequence, the common ratio
$r=\frac{g_{n+1}}{g_{n}}$ is constant
Example:
In o : $1,3,5,7,9 \quad d=2$
$\ln g: 1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27} \ldots, \quad r=\frac{2}{3}$

Arithmetic Series

- The sum of the terms of an arithmetic sequence (a.k.a arithmetic series):
$s_{n}=a_{1}+\ldots+a_{n}=\frac{1}{2} n\left(a_{1}+a_{n}\right)$
- Here's why: First, note that $a_{n}=a_{1}+(n-1) d$.
- Next, here are two expressions for s_{n} :
- $s_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{1}+(n-1) d\right)$
- $s_{n}=\left(a_{n}-(n-1) d\right)+\left(a_{n}-(n-2) d\right)+\ldots+\left(a_{n}-d\right)+a_{n}$
- Sum these expressions, and the d terms cancel, leaving:
- $2 s_{n}=n a_{1}+n a_{n}$ or $s_{n}=\frac{1}{2} n\left(a_{1}+a_{n}\right)$
- Ex: $\ln 1,3,5 d=2, a_{1}=1, a_{1}+d=3$ and $a_{1}+2 d=5$

Increasing Sequences

Definition: Increasing Sequence

An increasing sequence labeled i is ordered such that $i_{n} \leq i_{n+1}$.

Definition: Non-Decreasing Sequence
A non-decreasing sequence labeled i is ordered such that $i_{n} \leq i_{n+1}$ [Same as increasing!]

Definition: Strictly Increasing Sequence
A strictly increasing sequence labeled i is ordered such that $i_{n}<i_{n+1}$

Decreasing Sequences

Definition: Decreasing Sequence
A decreasing sequence labeled i is ordered such that $i_{n} \geq i_{n+1}$.

Definition: Non-Increasing Sequence
A non-increasing sequence labeled i is ordered
such that $i_{n} \geq i_{n+1}$ [Same as decreasing!]
Definition: Strictly Decreasing Sequence
A strictly decreasing sequence labeled i is
ordered such that $i_{n}>i_{n+1}$

Examples: Increasing/Decreasing Sequences

- The sequence $g=1,2,2,2,6,8,8,9$ is:
- Increasing
- Non-Decreasing
- $h_{n}=\frac{1}{n}, 4 \leq n \leq 7 \quad\left(h=\frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}\right)$
- $\left\{h_{n}\right\}_{n=4}^{7}$ is:
- Decreasing, Non-Increasing
- Strictly Decreasing

Subsequences

Definition: Subsequence

Sequence x is a subsequence of sequence y when the
elements of x are found within y in the same relative order

Example:

Is $\frac{1}{4}, \frac{1}{6}$ a subsequence of $\left\{h_{n}\right\}_{n=4}^{7}$?

Is $8,6,2$ a subsequence of $g=1,2,2,2,6,8,8,9$?

Need to Identify a Sequence?

A great resource for sequences:

The Online Encyclopedia of Integer Sequences

(http://oeis.org/)

Example:
Let's try it! 2,3,5,7,11,13,17

Strings

Definition: String

A string is a contiguous finite sequence of 0 or more elements drawn from a set called the alphabet

Example:

A sequence of DNA nucleotides (e.g. ATTGACCT) is called a string.

A Java String also qualifies (alphabet: UNICODE values)

Strings

- Notation:
- Lambda (λ) represents the empty (null) string
- $x y$ means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- $|x|$ represents the length of string x
- A^{*} is the set of strings that can bw formed using elements of an alphabet A
- A^{*} is an infinite set
- $\lambda \in A^{*}$

Set Cardinality Revisited

An observation about set cardinality:
Two sets A and B have the same cardinality iff there is a bijection from A to B

Definition: Finite

A set S is finite if there exists a bijective mapping between it and a set of cardinality $|S|$

Set Cardinality Revisited

Definition: Countably Infinite (a.k.a. Denumerably Infinite)
A set is countably infinite if there exists a bijective mapping between the set and either \mathbb{Z}^{*} or \mathbb{Z}^{+}

Definition: Countable

A set is countable if it is finite or countably infinite.
(Otherwise, it is uncountable.)

Set Cardinality Revisited

Example:

Is the set of digits in the 'house number' of the Gould-Simpson building countable?

$$
1040 \text { E. 4th St.. } \quad \Rightarrow\{0,1,4\}
$$

This set is finite, so, yes!

Is the set of positive multiples of 5 countable?
$\begin{array}{rcccccc}\mathbb{Z}^{+}: 1 & 2 & 3 & 4 & \ldots & 5 z & y \\ 5 & 10 & 15 & 20 & \ldots & z & \frac{y}{5}\end{array}$
Invertable \rightarrow Bijection \rightarrow Countable! (So, yes!)

Set Cardinality Revisited

Question: Are the positive rational numbers countable?

It is invertable, therefore it is a bijection.

Yes: (This is an application of a 'pairing function which invertible maps after duplicates are removed.) (With duplicates, the function is not invertable!)
(This is an example of a boustrophedonic path.)

Set Cardinality Revisited

Conjecture: A pairing function for \mathbb{R} cannot exist

Proof (Contradiction): Assume that a pairing function for the reals does exist. Given the set of real numbers, form a new number (not in the pairing) by changing the $d^{\text {th }}$ digit of the $d^{\text {th }}$ number. For example:
 0 . 8 9 4 6 \ldots 0 . 1 2 0 4 \ldots 0 . 7 7 7 6 \ldots 0 . 4 5 6 7 \ldots \vdots . \vdots \vdots \vdots \vdots \ddots because it has 1 digit 0 . 5 4 9 1 \ldots different than every number in the pairing
The result must be a value not in the set of reals, yet it is a real. This is a
contradiction (This is called Cantor's Diagonal Argument).
Therefore, a pairing function for \mathbb{R} cannot exist

