Sets

Set Concepts Covered in the Math Review

- Properties of Sets
- Set notation
- Operators
- Venn diagrams

Properties of Sets

- Sets are collections of unordered, distinct objects (no duplicates)
- Objects in a set are called members (or elements) of that set
- If x is a member of S, we write $x \in S$
- The number of elements in a set is called its cardinality written
- Infinite sets are often written using set builder notation

$$
S=\{x \mid x \text { has property } p\}
$$

Venn diagrams

Why are We Studying Sets?

- Sets are foundational in many areas of Computer Science:
- E.g.
- Relational Model of DBMS's
- Based on Set theory
- "Hard" Problems in CS
- E.g. Set covering (what is the smallest number of special forces commandos that can be selected such that the mission team has at least one person with each necessary skill?)

Subsets \& Supersets

Definition: Subset

Set A is a subset of set $B(A \subseteq B)$ if every member of A can be found in B.
In other words, $A \subseteq B \equiv \forall z(Z \in A \rightarrow z \in B), z \in \mathscr{U}$

Definition: Proper Subset

Set A is a proper subset of set $B(A \subset B)$ if $A \subseteq B$ and $A \neq B$. In other words, $A \subset B \equiv \forall z(Z \in A \rightarrow z \in B)$

$$
\wedge \exists w(w \notin A \wedge w \in B), z, w, \in \mathscr{U}
$$

Definition: Superset

If $A \subseteq B$, then B is called a superset of A,
written $B \supseteq A$

Subsets \& Supersets

In Venn Diagrams: $B \subset A$

Example: Let $G=\{1,3,4\}$ and $H=\{1,2,3,4,5\}$
$\begin{array}{ccc}\text { Is } G \subseteq H ? & \text { Is } G \subset H ? & \text { Is } H \subseteq G ? \\ \text { Yes } & \text { Yes } & \text { No }\end{array}$

Set Equality

Definition: Set Equality

Sets A and B are equal $(A=B)$ iff $A \subseteq B$ and $B \subseteq A$.

Example:
Let $J=\{a, b, c, d\}$ and $K=\{b, d, c, a\}$
Is $J \subseteq K ?$ Yes \quad Is $J \subset K ? ~ N o$

Is $K \subseteq J ?$ Yes
Is $K \subset J ?$ No

Does $J=K$? Yes

Power Sets

Definition: Power Set

The power set of set A, written $\mathscr{P}(A)$, is the set of all of A 's subsets, including the empty set.

Example:

Let $A=\{\alpha, \beta \gamma\}$
$\mathscr{P}(A)=\{\varnothing,\{\alpha\},\{\beta\},\{\gamma\}$,

$$
\{\alpha, \beta\},\{\alpha, \gamma\},\{\beta, \gamma\}
$$

$$
\{\alpha, \beta, \gamma\}\}
$$

Note: $|\mathscr{P}(X)|=2^{|X|}$

Genearlized Forms of \cup and \cap

- Remember summation and product notation? E.g.
- $\sum_{n=1}^{9}(2 n+1)$
- Similar notation is used to generalize the union and intersection operators.
- Assuming that $A_{1} \ldots A_{m}$ and $B_{1} \ldots B_{m}$ are sets, then:
- $\bigcup_{i=1}^{m} A_{i}=A_{i} \cup A_{2} \cup \ldots \cup A_{m}$
- $\bigcap_{i=1}^{m} B_{i}=B_{i} \cap B_{2} \cap \ldots \cap B_{m}$

Two More Set Properties

Definition: Disjoint

Two sets are disjoint if their intersection is the empty set. I.e. A and B are disjoint when $A \cap B=\varnothing$

Two More Set Properties

Definition: Disjoint
Two sets are disjoint if their intersection is the empty set. I.e. A and B are disjoint when $A \cap B=\varnothing$

Definition: Partition

A separation of members of a set into disjoint subsets.

Example:

Let $C=\{a, e, i, o, u\}$ and $D=\{g, j, p, q, y\}$.
$C \cap D=\varnothing$, thus C and D are disjoint
A partition of $C:\{\{a, e\},\{i\},\{o, u\}\}$

Examples of Set Identities

Associativity
$(A \cap B) \cap C=A \cap(B \cap C)$
$(A \cup B) \cup C=A \cup(B \cup C)$
Commutativity
$A \cap B=B \cap A$
$A \cup B=B \cup A$

Distributivity
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

De Morgan

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Note: As with logical identities, you do not need to memorize set identities

Expressing Set Operations in Logic

- We've seen the first two already:

$$
A \subseteq B \equiv \forall z(Z \in A \rightarrow z \in B), z \in \mathscr{U}
$$

$$
A \subset B \equiv \forall z(Z \in A \rightarrow z \in B) \wedge \exists w(w \notin A \wedge w \in B), z, w, \in \mathscr{U}
$$

- For those that return sets, Set Builder notation is a good choice

$$
\begin{aligned}
X \cup Y & \equiv\{z \mid z \in X \vee z \in Y\} \\
X \cap Y & \equiv\{z \mid z \in X \wedge z \in Y\} \\
X-Y & \equiv\{z \mid z \in X \wedge z \notin Y\} \\
\bar{X} & \equiv\{z \mid z \notin X\}
\end{aligned}
$$

Proving Set Identities

- To prove that set expressions S and T are equal, we can:

1. Prove that $S \subseteq T$ and $T \subseteq S$, or
2. Convert the equality to logic to prove it, and convert back

Example:

To Prove $S \cup \mathscr{U}=\mathscr{U}$ (Law of Domination), either:

1. Prove both $S \cup \mathscr{U} \subseteq \mathscr{U}$ and $\mathscr{U} \subseteq S \cup \mathscr{U}$, or
2. Express with set builder notation and logic operators, prove, and convert back to set operators

Proving Set Identities

Conjecture: $S \cup \mathscr{U}=\mathscr{U}$
Proof (direct): We will show $S \cup \mathscr{U} \subseteq \mathscr{U}$ and $\mathscr{U} \subseteq S \cup \mathscr{U}$
Case 1: Demonstrate $S \cup \mathscr{U} \subseteq \mathscr{U}$

$$
\begin{aligned}
S \cup \mathcal{U} \subseteq \mathcal{U} & \equiv \forall z z \in(S \cup \mathcal{U}) \rightarrow z \in \mathcal{U} & & \text { [Def of } \subseteq \text {] } \\
& \equiv \forall z z \in(S \cup \mathcal{U}) \rightarrow \mathrm{T} & & \text { [Def of } \mathscr{U}] \\
& \equiv \forall z \neg z \in(S \cup \mathcal{U}) \vee \mathrm{T} & & \text { [Law of Imp.] } \\
& \equiv \forall z \mathrm{~T} & & \text { [Domination] } \\
& \equiv \mathrm{T} & & \text { [Tautology] }
\end{aligned}
$$

Proving Set Identities

Case 2: Demonstrate $\mathscr{U} \subseteq S \cup \mathscr{U}$

$$
\begin{array}{rlrl}
\mathcal{U} \subseteq S \cup \mathcal{U} & \equiv \forall z z \in \mathcal{U} \rightarrow z \in S \cup \mathcal{U} & & {[\text { [Def of } \subseteq]} \\
& \equiv \forall z \mathrm{~T} \rightarrow z \in(S \cup \mathcal{U}) & & {[\text { [Def of } \mathscr{C}]} \\
& \equiv \forall z \mathrm{~T} \rightarrow(z \in S \vee z \in \mathcal{U}) & {[\text { Def of } \mathrm{U}]} \\
& \equiv \forall z \mathrm{~T} \rightarrow(z \in S \vee \mathrm{~T}) & & {[\text { Def of } \mathscr{U}]} \\
& \equiv \forall z \mathrm{~T} \rightarrow \mathrm{~T} & & \text { [Domination] } \\
& \equiv \forall z \mathrm{~T} & & \text { [Def of } \rightarrow \text {] } \\
& \equiv \mathrm{T} & & \text { [Tautology] }
\end{array}
$$

Therefore, $S \cup \mathscr{U}=\mathscr{U}$
Note: Can't move from ... $\rightarrow z \in S \cup \mathscr{U}$ to
$\ldots \rightarrow z \in \mathscr{U}$ because that's applying the conjecture.

Proving Set Identities

Conjecture: $S \cup \mathscr{U}=\mathscr{U}$
Proof (direct): We will show using set builder notation

$$
\begin{aligned}
S \cup \mathcal{U} & =\{z \mid z \in S \vee z \in \mathcal{U}\} & & {[\text { Def of } \cup] } \\
& =\{z \mid z \in S \vee \mathrm{~T}\} & & {[\text { Def of } \mathscr{U}] } \\
& =\{z \mid \mathrm{T}\} & & {[\text { Domination] }} \\
& =\mathcal{U} & & {[\text { Def of } \mathscr{U}] }
\end{aligned}
$$

Therefore, $S \cup \mathscr{U}=\mathscr{U}$

Proving Set Identities

Conjecture: $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Proof (direct): Using set notation

$$
\begin{array}{rlrl}
\overline{A \cup B} & =\{x \mid x \notin A \cup B\} & & \text { [Def of Comp.] } \\
& =\{x \mid \neg(x \in A \cup B)\} & & \text { [Def of } ᄀ] \\
& =\{x \mid \neg((x \in A) \vee(x \in B))\} & {[\text { Def. of } \cup]} \\
& =\{x \mid \neg(x \in A) \wedge \neg(x \in B)\} & & \text { [De Morgan] } \\
& =\{x \mid(x \notin A) \wedge(x \notin B)\} & & \text { [Def of }\urcorner] \\
& =\{x \mid(x \in \bar{A}) \wedge(x \in \bar{B})\} & & \text { [Def of Comp.] } \\
& =\{x \mid x \in \bar{A} \cap \bar{B}\} & & \text { [Def of } \cap .]
\end{array}
$$

Final Set Operator: Cartesian Product

Definition: Ordered Pair

An ordered pair is a group of two items (a, b) such that $(a, b) \neq(b, a)$ unless $a=b$.

Definition: Ordered n-Tuple
An ordered tuple is an ordered collection of n items
$\left(a_{i}, a_{2}, \ldots, a_{n}\right)$ with a_{i} as its first element, a_{2} as its
second element, \ldots, and a_{n} as its last $\left(n^{\text {th }}\right)$ element.

Example:

$(1,2)$ is a different ordered pair than $(2,1)$
\Rightarrow Remember: An ordered pair is not a set
(But you can create a set of ordered pairs!)

Final Set Operator: Cartesian Product

Definition: Cartesian product

The Cartesian Product of sets A and $B(A \times B)$ is the
set of all ordered pairs $(a, b), a \in A, b \in B$.
Or $X \times Y \equiv\{(x, y) \mid x \in X \wedge y \in Y\}$
Example:
$A=\{\square, \triangle\}, B=\{r, s\}$
$A \times B=\{(\square, r),(\square, s),(\triangle, r),(\triangle, s)\}$
$B \times A=\{(r, \square),(s, \square),(r, \triangle),(s, \triangle)\}$

Notes:
$A \times B \neq B \times A$, in general

$$
|A \times B|=|A| \cdot|B|
$$

Computer Representation of Sets

- Bit Vectors: One position per element in \mathscr{U}.

$$
\# \text { of bits }=|\mathscr{U}|
$$

$$
\text { Let } \begin{aligned}
\mathscr{U} & =\{a, b, c, d, e, f\} \\
A & =\{b, c, e\} \Rightarrow 011010 \\
B & =\{a, c, e, f\} \Rightarrow 101011
\end{aligned}
$$

$$
\bar{A} \Rightarrow \overline{011010}=100101 \quad(\{a, d, f\})
$$

$$
A \cup B \Rightarrow \frac{011010}{\frac{101011}{111011}} \quad A \cap B \Rightarrow \frac{011010}{101011} 5
$$

