Sets

Set Concepts Covered in the Math Review

- Properties of Sets
- Set notation
- Operators
- Venn diagrams

Properties of Sets

- <u>Sets</u> are collections of <u>unordered</u>, <u>distinct</u> objects (no duplicates)
- Objects in a set are called <u>members</u> (or <u>elements</u>) of that set
- If x is a member of S, we write $x \in S$
- The number of elements in a set is called its <u>cardinality</u> written
- Infinite sets are often written using <u>set builder</u> notation

$$S = \{x \mid x \text{ has property } p\}$$

Venn diagrams

Why are We Studying Sets?

- Sets are foundational in many areas of Computer Science:
 - E.g.
 - Relational Model of DBMS's
 - Based on Set theory
 - "Hard" Problems in CS
 - E.g. Set covering (what is the smallest number of special forces commandos that can be selected such that the mission team has at least one person with each necessary skill?)

Subsets & Supersets

Definition: Subset

Set A is a subset of set B ($A \subseteq B$) if every member of A can be found in B.

In other words, $A \subseteq B \equiv \forall z (Z \in A \rightarrow z \in B), z \in \mathcal{U}$

Definition: Proper Subset

Set A is a proper subset of set B ($A \subset B$) if $A \subseteq B$ and $A \neq B$. In other words, $A \subset B \equiv \forall z (Z \in A \rightarrow z \in B)$ $\land \exists w (w \notin A \land w \in B), z, w, \in \mathcal{U}$

Definition: Superset

If $A \subseteq B$, then B is called a superset of A, written $B \supseteq A$

Subsets & Supersets

In Venn Diagrams:

$$B \subset A$$

Example: Let
$$G = \{1,3,4\}$$
 and $H = \{1,2,3,4,5\}$

Is
$$G \subseteq H$$
?

Is
$$G \subset H'$$

Is
$$G \subseteq H$$
? Is $G \subset H$? Is $H \subseteq G$?

Yes

Yes

No

Set Equality

Definition: Set Equality

Sets A and B are equal (A = B) iff $A \subseteq B$ and $B \subseteq A$.

Example:

Let
$$J = \{a, b, c, d\}$$
 and $K = \{b, d, c, a\}$

Is
$$J \subseteq K$$
? Yes

Is
$$J \subset K$$
? No

Is
$$K \subseteq J$$
? Yes

Is
$$K \subset J$$
? No

Does
$$J = K$$
? Yes

Power Sets

Definition: Power Set

The power set of set A, written $\mathcal{P}(A)$, is the set of all of A's subsets, including the empty set.

Example:

Let
$$A=\{\alpha,\beta\gamma\}$$

$$\mathscr{P}(A)=\{\varnothing,\{\alpha\},\{\beta\},\{\gamma\},\{\alpha,\gamma\},\{\beta,\gamma\},\{\alpha,\beta\},\{\alpha,\gamma\},\{\beta,\gamma\},\{\alpha,\beta,\gamma\}\}.$$

Note:
$$|\mathscr{P}(X)| = 2^{|X|}$$

Genearlized Forms of U and \(\cappa\)

Remember summation and product notation? E.g.

$$\sum_{n=1}^{9} (2n+1)$$

- Similar notation is used to generalize the union and intersection operators.
- Assuming that $A_1...A_m$ and $B_1...B_m$ are sets, then:

$$\bigcup_{i=1}^{m} A_i = A_i \cup A_2 \cup \ldots \cup A_m$$

$$\bigcap_{i=1}^{m} B_i = B_i \cap B_2 \cap \ldots \cap B_m$$

Two More Set Properties

Definition: *Disjoint*

Two sets are disjoint if their intersection is the empty set. I.e. A and B are disjoint when $A \cap B = \emptyset$

Two More Set Properties

Definition: *Disjoint*

Two sets are disjoint if their intersection is the empty set. I.e. A and B are disjoint when $A \cap B = \emptyset$

Definition: Partition

A separation of members of a set into disjoint subsets.

Example:

Let $C = \{a, e, i, o, u\}$ and $D = \{g, j, p, q, y\}$.

 $C \cap D = \emptyset$, thus C and D are disjoint

A partition of C : $\{\{a, e\}, \{i\}, \{o, u\}\}$

Examples of Set Identities

Associativity $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

Commutativity $A \cap B = B \cap A$ $A \cup B = B \cup A$

Distributivity $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

De Morgan $\frac{\overline{A \cup B} = \overline{A} \cap \overline{B}}{\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}}$

Note: As with logical identities, you do not need to memorize set identities

Expressing Set Operations in Logic

We've seen the first two already:

$$A \subseteq B \equiv \forall z (Z \in A \rightarrow z \in B), z \in \mathcal{U}$$

$$A \subset B \equiv \forall z (Z \in A \to z \in B) \land \exists w (w \notin A \land w \in B), z, w, \in \mathcal{U}$$

For those that return sets, Set Builder notation is a good choice

$$\begin{array}{ccc} X \cup Y & \equiv & \{z | z \in X \lor z \in Y\} \\ X \cap Y & \equiv & \{z | z \in X \land z \in Y\} \\ X - Y & \equiv & \{z | z \in X \land z \not\in Y\} \\ \overline{X} & \equiv & \{z | z \not\in X\} \end{array}$$

- To prove that set expressions S and T are equal, we can:
 - 1. Prove that $S \subseteq T$ and $T \subseteq S$, or
 - 2. Convert the equality to logic to prove it, and convert back

Example:

To Prove $S \cup \mathcal{U} = \mathcal{U}$ (Law of Domination), either:

- 1. Prove both $S \cup \mathcal{U} \subseteq \mathcal{U}$ and $\mathcal{U} \subseteq S \cup \mathcal{U}$, or
- 2. Express with set builder notation and logic operators, prove, and convert back to set operators

Conjecture: $S \cup \mathcal{U} = \mathcal{U}$

Proof (direct): We will show $S \cup \mathcal{U} \subseteq \mathcal{U}$ and $\mathcal{U} \subseteq S \cup \mathcal{U}$

Case 1: Demonstrate $S \cup \mathcal{U} \subseteq \mathcal{U}$

$$S \cup \mathcal{U} \subseteq \mathcal{U} \equiv \forall z \ z \in (S \cup \mathcal{U}) \rightarrow z \in \mathcal{U}$$
 [Def of \subseteq]
$$\equiv \forall z \ z \in (S \cup \mathcal{U}) \rightarrow T$$
 [Def of \mathscr{U}]
$$\equiv \forall z \ \neg z \in (S \cup \mathcal{U}) \lor T$$
 [Law of Imp.]
$$\equiv \forall z \ T$$
 [Domination]
$$\equiv T$$
 [Tautology]

(Continued ...)

Case 2: Demonstrate $\mathcal{U} \subseteq S \cup \mathcal{U}$

$$\begin{array}{lll} \mathcal{U} \subseteq S \cup \mathcal{U} & \equiv & \forall z \ z \in \mathcal{U} \to z \in S \cup \mathcal{U} & [\mathsf{Def} \ \mathsf{of} \ \subseteq] \\ & \equiv & \forall z \ T \to z \in (S \cup \mathcal{U}) & [\mathsf{Def} \ \mathsf{of} \ \mathcal{U}] \\ & \equiv & \forall z \ T \to (z \in S \lor z \in \mathcal{U}) & [\mathsf{Def} \ \mathsf{of} \ \cup] \\ & \equiv & \forall z \ T \to (z \in S \lor T) & [\mathsf{Def} \ \mathsf{of} \ \mathcal{U}] \\ & \equiv & \forall z \ T \to T & [\mathsf{Domination}] \\ & \equiv & \forall z \ T & [\mathsf{Def} \ \mathsf{of} \ \to] \\ & \equiv & T & [\mathsf{Tautology}] \end{array}$$

Therefore, $S \cup \mathcal{U} = \mathcal{U}$

Note: Can't move from ... $\rightarrow z \in S \cup \mathcal{U}$ to

... $\rightarrow z \in \mathcal{U}$ because that's applying the conjecture.

Conjecture: $S \cup \mathcal{U} = \mathcal{U}$

Proof (direct): We will show using set builder notation

$$S \cup \mathcal{U} = \{z | z \in S \lor z \in \mathcal{U}\}$$
 [Def of \cup]
$$= \{z | z \in S \lor T\}$$
 [Def of \mathcal{U}]
$$= \{z | T\}$$
 [Domination]
$$= \mathcal{U}$$
 [Def of \mathcal{U}]

Therefore, $S \cup \mathcal{U} = \mathcal{U}$

 $\underline{\mathbf{Conjecture}} : \overline{A \cup B} = \overline{A} \cap \overline{B}$

Proof (direct): Using set notation

Final Set Operator: Cartesian Product

Definition: Ordered Pair

An ordered pair is a group of two items (a, b) such that $(a, b) \neq (b, a)$ unless a = b.

Definition: Ordered n-Tuple

An ordered tuple is an ordered collection of n items $(a_i, a_2, ..., a_n)$ with a_i as its first element, a_2 as its second element, ..., and a_n as its last (n^{th}) element.

Example:

- (1,2) is a different ordered pair than (2,1)
- ⇒ Remember: An ordered pair is *not* a set (But you *can* create a set of ordered pairs!)

Final Set Operator: Cartesian Product

Definition: Cartesian product

The Cartesian Product of sets A and B ($A \times B$) is the set of all ordered pairs (a,b), $a \in A$, $b \in B$. Or $X \times Y \equiv \{(x,y) \mid x \in X \land y \in Y\}$

Example:

$$A = \{ \Box, \triangle \}, B = \{r, s\}$$

$$A \times B = \{ (\Box, r), (\Box, s), (\triangle, r), (\triangle, s) \}$$

$$B \times A = \{ (r, \Box), (s, \Box), (r, \triangle), (s, \triangle) \}$$

Notes:
$$A \times B \neq B \times A$$
, in general $|A \times B| = |A| \cdot |B|$

Computer Representation of Sets

• Bit Vectors: One position per element in \mathcal{U} .

of bits =
$$|\mathcal{U}|$$

Let
$$\mathcal{U} = \{a, b, c, d, e, f\}$$

$$A = \{b, c, e\} \Rightarrow 011010$$

$$B = \{a, c, e, f\} \Rightarrow 101011$$

$$\overline{A} \Rightarrow \overline{011010} = 100101 \ (\{a, d, f\})$$

$$A \cup B \Rightarrow 011010 \qquad A \cap B \Rightarrow 011010 \\ \vee 101011 \qquad \wedge 101011 \\ \hline 111011 \qquad 001010$$