
Algorithms
3.1, 5.3, 5.4

Algorithms
Definition: Algorithm

A finite set of instructions for performing a task

Example:

Is Binary Search an algorithm?  
 
Is the Division Algorithm an algorithm?

 (It’s not a set of instructions)

Yes!

No!

The Framework
1. - means that the solution can be

described by an algorithm

(a) - the algorithm is efficient

(b) - no efficient solutions

2. - no algorithm will ever describe the
solution.

Computable

Tractable

Intractable

Non-computable

Algorithm Characteristics
1. Input - Data is provided from outside of the algorithm

2. Output - Information produced by the algorithm

3. Generality - The instructions can solve a collection
of similar problems

Algorithm Characteristics
4. Definiteness - (a.ka. Precision, Uniqueness) The

instructions are not open to interpretation.

5. Correctness - The output is the accepted answer for
the given input.

6. Finiteness - The complete output is produced by the
execution of a finite quantity of instructions

Tooth-brushing Algorithm
1. Grab the toothpaste

2. Uncap the toothpaste

3. Grab your toothbrush

4. Squeeze toothpaste onto your toothbrush

5. Brush your teeth

Some problems with this algorithm:

What if the tube is empty? (Input)

Does this algorithm solve related problems? (Generality)

Brushing technique? (Definiteness)

When do we stop? (Finiteness)

Some Sample Iterative Algorithms

Example: Decimal to Base X Conversion

Base 10 value to be converted
Destination number system
digit(0) holds LSD of result

Some Sample Iterative Algorithms

What is the cost to evaluate ?

Naive evaluation: 

But can we do better?

f(x) = 2x3 − 4x2 + 3x + 6

f(x) = 2 ⋅ x ⋅ x ⋅ x − 4 ⋅ x ⋅ x + 3 ⋅ x + 6

f(x) = x(2x2 − 4x + 3) + 6

= x(x(2x − 4) + 3) + 6

= x(x(x(2) − 4) + 3) + 6

1 2 3 4 5 61 2 3 3+’s, 6 's⋅

3+’s, 3 's⋅123 1 2 3

Some Sample Iterative Algorithms

Example: Horner’s Algorithm for Polynomial Evaluation

Value used to evaluate the polynomial
Largest Exponent
Coefficients of
Evaluation of the polynomial

x0 . . xn

Recursive Definitions
Definition: Recursive Definition

 A complete recursive definition has three parts:

(a) The determines how trivial cases
are to be handled

(b) The describes complex problem
instances in terms of simpler instances

(c) The provides bounds on the
definition

basis clause

inductive clause

extremal clause

Recursive Definitions
Example:

Consider the sequence

Consider the non-negative integers ()

Consider general trees

S : 13,10,7,4,1

Z*

Basis:

Recurrence:

Extremal:

S1 = 13
Sn = Sn−1 − 3

1 ≤ n ≤ 5

Basis:

Recurrence: if , then

Extremal: N/A

1 ∈ ℤ
n ∈ ℤ n + 1 ∈ ℤ

Basis: Empty tree (0 nodes)

Recurrence: The root has >= 0 subtrees that are general trees

Extremal: N/A

Recursive Algorithms
Definition: Recursive Algorithm

A recursive algorithm express the solution to a task
in terms of a simpler case of the same problem.

Aside: Control Structures in Programming Languages

1. Sequence

2. Selection

3. Iteration…or Recursion!

Example: Factorials
Definition: Factorial

The factorial of , denoted , is the product
of all integers 1 through , where .

n ∈ ℤ* n!
n 0! = 1

An iterative factorial algorithm is easy to create:

Example: Factorials
Factorials can be easily computed recursively:

But what are the Basis, Inductive, and Extremal clauses?

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1
4! = 4 ⋅ 3!

Basis:

Inductive:

Extremal:

 is defined

0! = 1

n! = n ⋅ (n − 1)!

n! ∀n ∈ ℤ*

Example: Factorials
Recursive pseudocode algorithm:

(Basis)

(Inductive)

Extremal? Assumed!

Can We Prove Our Algorithm?

Proof (structural induction):

Basis: Let . The algorithm returns 1, and by
definition, . Ok!

 Inductive Step: If factorial(n) returns , then
factorial(n+1) returns .

When the input is , the algorithm will compute
 to be factorial(n)

(Continues …)

n = 0
0! = 1

n!
(n + 1)!

(n + 1)
(n + 1)! (n + 1)

Conjecture: factorial(n) returns n!

*

Can We Prove Our Algorithm?
By the Inductive Hypothesis, we know that

factorial(n) computes . And, from the recursive

definition of factorial, we know that

 .

Therefore, factorial(n) computes

n!

n! (n + 1) = (n + 1)!

n!

*

Another Structural Induction Proof

Proof (structural induction):

Basis: A binary tree with one node has 2 nulls. Ok!

Inductive Step: If a binary tree of nodes has nulls,
then a binary tree of nodes has nulls.

There are three possible insertion situations

(Proof Continues …)

n n + 1
n + 1 n + 2

Conjecture: In a binary tree, the number of null references
equals one more than the number of nodes in the tree, for
all non-empty binary trees.

Another Structural Induction Proof

 Case 1: Add a new leaf.

By the Inductive Hypothesis, we have nodes and nulls in
our tree.

Adding a leaf adds one node and two nulls, but occupies (removes)
an existing null.

This is a net gain of one node and one null, giving a total of
nodes and nulls, as desired.

(Proof Continues)

n n + 1

n + 1
n + 2

Another Structural Induction Proof

 Case 2: Insert between nodes.

We add a node, occupy an existing null, and use one of its
children, leaving one extra new null.

As before this is a gain of one node and one null.

(Proof Continues)

Another Structural Induction Proof

 Case 3: Insert a new root.

We add a node and occupy of its nulls in referencing the old
root. Again, a net gain of one node and one null.

Therefore, #-nulls = 1+ # nodes, for all non-empty binary
trees

Example: Fibonacci Sequence
Definition: Fibonacci Sequence

The term of the Fibonacci sequence is the sum of
terms and , where and

nth

n − 1 n − 2 F(0) = 0 F(1) = 1

Recursively generating terms of the sequence is easy…

Example: Fibonacci Sequence
… but inefficient!

Consider this tree of invocations resulting from fibonacci(5):
f(5)

f(4)

f(3)

f(2)

f(1) f(0)

f(2)

f(1)

f(3)

f(2) f(1)

f(1) f(0) f(1) f(0)

+

+

++

+

+

+

Note the three trees and the two trees
 Repeated (and therefore wasted) effort!

f(2) f(3)
⇒

Extra Slides

Example: Euclidean Algorithm for GCDs

Theorem: GCD(a,b) = GCD(b,a%b)

Proof: See Rosen 8/e p. 283

Recursive pseudocode algorithm:

Question: Is this more or less efficient than the iterative
algorithm presented earlier?

Example: Sums of Odd Positive Integers

Let oddsum(term) represent the sum of through .

Base: oddsum(1) = 1

General: oddsum(term) =

 oddsum(term-1) + 2*term -1

ℤ+ : 1 2 3 4 … n
(m + 1)

2

o : 1 3 5 7 … 2n − 1 m

o(1) o(term)

Example: Sums of Odd Positive Integers

Recursive implementation, using pseudocode:

Proving oddsum()

Proof (structural induction):

Basis: Let . The algorithm returns 1, and . Ok!

 Inductive Step: If oddsum(t) returns ,

 then oddsum(t+1) returns .

(Continues …)

t = 1
1

∑
i=1

(2i − 1) = 1

t

∑
i=1

(2i − 1)

t+1

∑
i=1

(2i − 1)

Conjecture: oddsum(t) produces
t

∑
i=1

(2i − 1), ∀t ≥ 1

Proving oddsum()
 When given , oddsum() returns

 oddsum(t) oddsum(t)

By the Inductive Hypothesis, oddsum(t) = .

Substituting, oddsum(t+1) returns .

 is the term of the sequence; thus

.

Therefore, oddsum(t) produces

t + 1
+[2(t + 1) − 1] = +(2t + 1)

t

∑
i=1

(2i − 1)

t

∑
i=1

(2i − 1) + (2t + 1)

2t + 1 (t + 1)st
t

∑
i=1

(2i − 1) + (2t + 1) =
t+1

∑
i=1

(2i − 1)

t

∑
i=1

(2i − 1), ∀t ≥ 1

