Algorithms

3.1,58.3, 5.4

Algorithms

Definition: Algorithm
A finite set of instructions for performing a task

Example:

Is Binary Search an algorithm? Yes!

Is the Division Algorithm an algorithm? pNo!

(It’s not a set of instructions)

The Framework

1. Computable _ means that the solution can be
described by an algorithm

(@) _Tractable - the algorithm is efficient

(b) _Intractable _ no efficient solutions

2, Non-computable _ ho aigorithm will ever describe the
solution.

Algorithm Characteristics

1. Input - Data is provided from outside of the algorithm
2. Output - Information produced by the algorithm

3. Generality - The instructions can solve a collection
of similar problems

Algorithm Characteristics

4. Definiteness - (a.ka. Precision, Uniqueness) The
instructions are not open to interpretation.

5. Correctness - The output is the accepted answer for
the given input.

6. Finiteness - The complete output is produced by the
execution of a finite quantity of instructions

Tooth-brushing Algorithm

1. Grab the toothpaste
Uncap the toothpaste
Grab your toothbrush

Sgueeze toothpaste onto your toothbrush

o &~ D

Brush your teeth

Some problems with this algorithm:
What if the tube is empty? (Input)
Does this algorithm solve related problems? (Generality)
Brushing technique? (Definiteness)
When do we stop? (Finiteness)

Some Sample Iterative Algorithms

Example: Decimal to Base X Conversion

Input: n Base 10 value to be converted
base Destination number system
Output: digit() digit(0) holds LSD of result

quotient <-- n

i <-——- 0

while quotient does not equal O:
digit(i) <-- quotient modulo base
quotient <-- the floor of quotient/base
increment 1 by 1

end while

Some Sample Iterative Algorithms

What is the cost to evaluate f(x) = 2x> — 4x% + 3x + 67

Naive evaluation:

fX=2-x-x-x—4-x-x+3-x o
123 1 4 5 2 6 3 3+'s, 67’

But can we do better?

fx) =x2x* —4x+3)+6
=x(x2x—-4)+3)+ 6

=x(x(x2)—4)+3)+6
321 1 2 3 3+’s,3 *'s

Some Sample Iterative Algorithms

Example: Horner’s Algorithm for Polynomial Evaluation

Input: x Value used to evaluate the polynomial
n Largest Exponent
a(0).. a(n) Coefficients of x" . . x”

Output: result Evaluation of the polynomial

result <-- a(n)

index <-—- n-1

while index>=0:
result <-- x * result + a(index)
decrement index by 1

end while

output result

Recursive Definitions

Definition: RFecursive Definition

A complete recursive definition has three parts:

(a) The _ basis clause determines how trivial cases
are to be handled

(b) The _inductive clause describes complex problem
instances in terms of simpler instances

(c) The _extremal clause provides bounds on the
definition

Recursive Definitions

Example:

Consider the sequence S : 13,10,7.,4,1

Basis: §; = 13
Recurrence: S, = §,_; — 3
Extremal: 1 <n <5

Consider the non-negative integers (Z*)

Basis: 1 € Z

Recurrence:ifn € Z,thenn+1 € Z
Extremal: N/A

Consider general trees

Basis: Empty tree (0O nodes)
Recurrence: The root has >= 0 subtrees that are general trees
Extremal: N/A

Recursive Algorithms

Definition: Fecursive Algorithm

A recursive algorithm express the solution to a task
iIn terms of a simpler case of the same problem.

Aside: Control Structures in Programming Languages
1. Sequence

2. Selection

3. lteration...or Recursion!

Example: Factorials

Definition: Factorial

The factorial of n € Z*, denoted n!, is the product
of all integers 1 through n, where 0! = 1.

An iterative factorial algorithm is easy to create:

product <-- 1

while n 1s larger than 1:
product <-- product * n
n<--n-1

end while

output product

Example: Factorials

Factorials can be easily computed recursively:
41=4.3.2-1
41 =4.3

But what are the Basis, Inductive, and Extremal clauses?
Basis: 0O!=1

Inductive: n!=n-n—-1)!

Extremal: ;| s defined Vn € Z* .

Example: Factorials

Recursive pseudocode algorithm:

subprogram factorial (given: n) returns: n!
if n 1s O
return 1
else
(Inductive) answer <-- n * factorial(n-1)
end 1f
end subprogram

(Basis)

Extremal? Assumed!

Can We Prove Our Algorithm?

Conjecture: factorial(n) returns 7!

Proof (structural induction):

Basis: Let n = (. The algorithm returns 1, and by
definition, 0! = 1. Ok!

Inductive Step: If factorial(n) returns n!, then
factorial(n+1) returns (n + 1) !.

When the input is (n + 1), the algorithm will compute
(n+ 1)!tobe (n + 1) * factorial(n)

(Continues ...)

Can We Prove Our Algorithm?

By the Inductive Hypothesis, we know that

factorial(n) computes n!. And, from the recursive
definition of factorial, we know that

n'xm+1)=m+1)!.

Therefore, factorial(n) computes 7!

Another Structural Induction Proof

Conjecture: In a binary tree, the number of null references
equals one more than the number of nodes in the tree, for
all non-empty binary trees.

Proof (structural induction):

Basis: A binary tree with one node has 2 nulls. Ok!

Inductive Step: If a binary tree of n nodes has n + 1 nulls,
then a binary tree of n + 1 nodes has n + 2 nulls.

There are three possible insertion situations

(Proof Continues ...)

Another Structural Induction Proof

KXOKX_’KE&

Case 1: Add a new leaf.

By the Inductive Hypothesis, we have n nodes and n + 1 nulls in
our tree.

Adding a leaf adds one node and two nulls, but occupies (removes)
an existing null.

This is a net gain of one node and one null, giving a total of n + 1
nodes and n + 2 nulls, as desired.

(Proof Continues)

Another Structural Induction Proof

Case 2: Insert between nodes.

We add a node, occupy an existing null, and use one of its
children, leaving one extra new null.

As before this is a gain of one node and one null.

(Proof Continues)

Another Structural Induction Proof

Case 3: Insert a new root.

We add a node and occupy of its nulls in referencing the old
root. Again, a net gain of one node and one null.

Therefore, #-nulls = 1+ # nodes, for all non-empty binary
trees

Example: Fibonacci Sequence

Definition: [/bonacci Sequence

The n™ term of the Fibonacci seqgquence is the sum of
teemsn — 1 andn — 2, where F(0) = 0and F(1) =1

Recursively generating terms of the sequence is easy...

subprogram fibonacci (given: n) returns: nth term
if n is O or 1
return n
else
return fibonacci(n-1) + fibonacci(n-2)
end 1if
end subprogram

Example: Fibonacci Sequence

... but inefficient!

Consider this tree of invocations resulting from fibonacci(5):

JO)
/ \
f(4) + f3)
3/ / O\
f(+ 2 /f(2)\+ J(1)
/f(z)\+ f(l) f(1{+>(0) A1) + f(0)
() + A0)

Note the three f(2) trees and the two f(3) trees
= Repeated (and therefore wasted) effort!

Extra Slides

Example: Euclidean Algorithm for GCDs

Theorem: GCD(a,b) = GCD(b,a%b)

Proof: See Rosen 8/e p. 283

Recursive pseudocode algorithm:

subprogram GCD (given: a,b) returns: gcd(a,b)
1f a 1s 0, return b endif
1if b 1s 0O, return a endif
answer <-- GCD(b, alb)
return answer
end subprogram

Question: Is this more or less efficient than the iterative
algorithm presented earlier?

Example: Sums of Odd Positive Integers

+ 1

7Z*123 4 ... n (m+ 1)
2

o:1 357 ... 2n-—1 m

Let oddsum(term) represent the sum of o(1) through o(term).
Base: oddsum(1l) =1
General: oddsum(term) =

oddsum(term-1) + 2*term -1

Example: Sums of Odd Positive Integers

Recursive implementation, using pseudocode:

subprogram oddsum (given: term)
returns: sum from 1 through term of (2i-1)

1if term is 1, return 1
otherwise
answer <-- oddsum(term-1)+2*term-1

return answer
end 1f

end subprogram

Proving oddsum()

Conjecture: oddsum (t) produces) (2i—1), V> 1

Proof (structural induction):

1
Basis: Let t = 1. The algorithm returns 1, and Z (2i—1) = 1. Ok
i=1

t
Inductive Step: If oddsum(t) returns Z (21 — 1),
i=1

t+1
then oddsum(t+1) returns Z (21 —1).

=1

(Continues ...)

Proving oddsumy()

When given f + 1

oddsum(t) +

—
-

, oddsum() returns
2(t+ 1) — 1] = oddsum(t)+(2¢ + 1)

4
By the Inductive Hypothesis, oddsum(t) = 2 (21 —1).

=1

4
Substituting, oddsum(t+1) returns 2 Qi—1D+Q2t+1).

2t + 1isthe (£ + 1
A

Z (2i— 1)+ (2t

=1

i=1

)" term of the sequence; thus
t+1

+1)= Z(Zz’— 1).
=1

[
Therefore, oddsum(t) produces Z 2i—1), Ve > 1

=1

