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Algorithms
Definition: Algorithm


A finite set of instructions for performing a task

Example:


Is Binary Search an algorithm?     
 
Is the Division Algorithm an algorithm?


        (It’s not a set of instructions)

Yes!

No!



The Framework
1.                        - means that the solution can be 

described by an algorithm 


(a)                        - the algorithm is efficient


(b)                        - no efficient solutions


2.                             - no algorithm will ever describe the 
solution. 

Computable

Tractable

Intractable

Non-computable



Algorithm Characteristics
1. Input - Data is provided from outside of the algorithm 

2. Output - Information produced by the algorithm 

3. Generality - The instructions can solve a collection 
of similar problems



Algorithm Characteristics
4. Definiteness - (a.ka. Precision, Uniqueness) The 

instructions are not open to interpretation. 

5. Correctness - The output is the accepted answer for 
the given input. 

6. Finiteness - The complete output is produced by the 
execution of a finite quantity of instructions



Tooth-brushing Algorithm
1. Grab the toothpaste


2. Uncap the toothpaste


3. Grab your toothbrush


4. Squeeze toothpaste onto your toothbrush


5. Brush your teeth

Some problems with this algorithm:

What if the tube is empty?  (Input)

Does this algorithm solve related problems?  (Generality)

Brushing technique?  (Definiteness)

When do we stop?  (Finiteness)



Some Sample Iterative Algorithms

Example: Decimal to Base X Conversion


          

Base 10 value to be converted 
Destination number system 
digit(0) holds LSD of result



Some Sample Iterative Algorithms

What is the cost to evaluate ?


Naive evaluation: 
      


But can we do better?


      


            


            

f(x) = 2x3 − 4x2 + 3x + 6

f(x) = 2 ⋅ x ⋅ x ⋅ x − 4 ⋅ x ⋅ x + 3 ⋅ x + 6

f(x) = x(2x2 − 4x + 3) + 6

= x(x(2x − 4) + 3) + 6

= x(x(x(2) − 4) + 3) + 6

1 2 3 4 5 61 2 3 3+’s, 6 's⋅

3+’s, 3 's⋅123 1 2 3



Some Sample Iterative Algorithms

Example: Horner’s Algorithm for Polynomial Evaluation 

          
Value used to evaluate the polynomial 
Largest Exponent 
Coefficients of  
Evaluation of the polynomial

x0 . . xn



Recursive Definitions
Definition: Recursive Definition

      A complete recursive definition has three parts:


(a) The                                     determines how trivial cases 
are to be handled


(b) The                                     describes complex problem 
instances in terms of simpler instances


(c) The                                     provides bounds on the 
definition


basis clause

inductive clause

extremal clause



Recursive Definitions
Example: 

Consider the sequence 


Consider the non-negative integers ( )


Consider general trees

S : 13,10,7,4,1

Z*

Basis: 

Recurrence: 

Extremal: 

S1 = 13
Sn = Sn−1 − 3

1 ≤ n ≤ 5

Basis: 

Recurrence: if , then 

Extremal: N/A

1 ∈ ℤ
n ∈ ℤ n + 1 ∈ ℤ

Basis: Empty tree (0 nodes)

Recurrence: The root has >= 0 subtrees that are general trees

Extremal: N/A



Recursive Algorithms
Definition: Recursive Algorithm


A recursive algorithm express the solution to a task 
in terms of a simpler case of the same problem. 

Aside: Control Structures in Programming Languages 

1. Sequence

2. Selection

3. Iteration…or Recursion!



Example: Factorials
Definition: Factorial


The factorial of , denoted , is the product 
of all integers 1 through , where .

n ∈ ℤ* n!
n 0! = 1

An iterative factorial algorithm is easy to create:



Example: Factorials
Factorials can be easily computed recursively:







But what are the Basis, Inductive, and Extremal clauses?

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1
4! = 4 ⋅ 3!

Basis: 

Inductive: 

Extremal:

 

 

 is defined 

0! = 1

n! = n ⋅ (n − 1)!

n! ∀n ∈ ℤ*



Example: Factorials
Recursive pseudocode algorithm:

(Basis)

(Inductive)

Extremal? Assumed!



Can We Prove Our Algorithm?

Proof (structural induction):


Basis: Let . The algorithm returns 1, and by 
definition, . Ok!


 Inductive Step:  If factorial(n) returns , then 
factorial(n+1) returns .


When the input is , the algorithm will compute 
 to be     factorial(n)


(Continues … )

n = 0
0! = 1

n!
(n + 1)!

(n + 1)
(n + 1)! (n + 1)

Conjecture: factorial(n) returns n!

*



Can We Prove Our Algorithm?
By the Inductive Hypothesis, we know that 

factorial(n) computes . And, from the recursive 

definition of factorial, we know that

     .


Therefore, factorial(n) computes 

n!

n! (n + 1) = (n + 1)!

n!

*



Another Structural Induction Proof

Proof (structural induction):


Basis: A binary tree with one node has 2 nulls. Ok!


Inductive Step:  If a binary tree of  nodes has  nulls, 
then a binary tree of  nodes has  nulls.


There are three possible insertion situations


(Proof Continues … )

n n + 1
n + 1 n + 2

Conjecture: In a binary tree, the number of null references 
equals one more than the number of nodes in the tree, for 
all non-empty binary trees. 



Another Structural Induction Proof

 Case 1: Add a new leaf. 

By the Inductive Hypothesis, we have  nodes and  nulls in 
our tree. 

Adding a leaf adds one node and two nulls, but occupies (removes) 
an existing null. 

This is a net gain of one node and one null, giving a total of  
nodes and  nulls, as desired.


(Proof Continues)

n n + 1

n + 1
n + 2



Another Structural Induction Proof

 Case 2: Insert between nodes.

We add a node, occupy an existing null, and use one of its 
children, leaving one extra new null.  

As before this is a gain of one node and one null. 


(Proof Continues)



Another Structural Induction Proof

 Case 3: Insert a new root.

We add a node and occupy of its nulls in referencing the old 
root. Again, a net gain of one node and one null. 


Therefore, #-nulls = 1+ # nodes, for all non-empty binary 
trees



Example: Fibonacci Sequence
Definition: Fibonacci Sequence


The  term of the Fibonacci sequence is the sum of 
terms  and , where  and 

nth

n − 1 n − 2 F(0) = 0 F(1) = 1

Recursively generating terms of the sequence is easy… 



Example: Fibonacci Sequence
… but inefficient!

Consider this tree of invocations resulting from fibonacci(5):
f(5)

f(4)

f(3)

f(2)

f(1) f(0)

f(2)

f(1)

f(3)

f(2) f(1)

f(1) f(0) f(1) f(0)

+

+

++

+

+

+

Note the three  trees and the two  trees 
 Repeated (and therefore wasted) effort!

f(2) f(3)
⇒



Extra Slides



Example: Euclidean Algorithm for GCDs

Theorem: GCD(a,b) = GCD(b,a%b)


Proof: See Rosen 8/e p. 283

Recursive pseudocode algorithm:

Question: Is this more or less efficient than the iterative 
algorithm presented earlier?



Example: Sums of Odd Positive Integers

                          


                         


Let oddsum(term) represent the sum of  through .


Base: oddsum(1)  = 1 

General: oddsum(term)  =  

                         oddsum(term-1)  + 2*term -1

ℤ+ : 1 2 3 4 … n
(m + 1)

2

o : 1 3 5 7 … 2n − 1 m

o(1) o(term)



Example: Sums of Odd Positive Integers

Recursive implementation, using pseudocode:




Proving oddsum()

Proof (structural induction):


Basis: Let . The algorithm returns 1, and . Ok!


 Inductive Step:  If oddsum(t) returns , 


                             then oddsum(t+1) returns .


(Continues … )

t = 1
1

∑
i=1

(2i − 1) = 1

t

∑
i=1

(2i − 1)

t+1

∑
i=1

(2i − 1)

Conjecture: oddsum(t) produces 
t

∑
i=1

(2i − 1), ∀t ≥ 1



Proving oddsum()
 When given ,  oddsum() returns

     oddsum(t) oddsum(t)  

By the Inductive Hypothesis, oddsum(t) = .


Substituting, oddsum(t+1) returns .


 is the  term of the sequence; thus 

.


Therefore, oddsum(t) produces 

t + 1
+[2(t + 1) − 1] = +(2t + 1)

t

∑
i=1

(2i − 1)

t

∑
i=1

(2i − 1) + (2t + 1)

2t + 1 (t + 1)st
t

∑
i=1

(2i − 1) + (2t + 1) =
t+1

∑
i=1

(2i − 1)

t

∑
i=1

(2i − 1), ∀t ≥ 1


