Algorithms
 3.1, 5.3, 5.4

Algorithms

Definition: Algorithm

A finite set of instructions for performing a task

Example:

Is Binary Search an algorithm? Yes!
Is the Division Algorithm an algorithm? No!
(It's not a set of instructions)

The Framework

1. Computable - means that the solution can be described by an algorithm
(a) Tractable - the algorithm is efficient
(b) Intractable - no efficient solutions
2. Non-computable - no algorithm will ever describe the solution.

Algorithm Characteristics

1. Input - Data is provided from outside of the algorithm
2. Output - Information produced by the algorithm
3. Generality - The instructions can solve a collection of similar problems

Algorithm Characteristics

4. Definiteness - (a.ka. Precision, Uniqueness) The instructions are not open to interpretation.
5. Correctness - The output is the accepted answer for the given input.
6. Finiteness - The complete output is produced by the execution of a finite quantity of instructions

Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth

Some problems with this algorithm:
What if the tube is empty? (Input)
Does this algorithm solve related problems? (Generality)
Brushing technique? (Definiteness)
When do we stop? (Finiteness)

Some Sample Iterative Algorithms

Example: Decimal to Base X Conversion

```
    Input: n Base 10 value to be converted
        base
Output: digit()
    Destination number system
    digit(0) holds LSD of result
```

```
quotient <-- n
```

quotient <-- n
i <-- 0
i <-- 0
while quotient does not equal 0:
while quotient does not equal 0:
digit(i) <-- quotient modulo base
digit(i) <-- quotient modulo base
quotient <-- the floor of quotient/base
quotient <-- the floor of quotient/base
increment i by 1
increment i by 1
end while

```
end while
```


Some Sample Iterative Algorithms

What is the cost to evaluate $f(x)=2 x^{3}-4 x^{2}+3 x+6 ?$
Naive evaluation:

But can we do better?

$$
\begin{aligned}
& f(x)=x\left(2 x^{2}-4 x+3\right)+6 \\
&=x(x(2 x-4)+3)+6 \\
&=x(x(x(2)-4)+3)+6 \\
& \begin{array}{ccc}
2 & 1 & 1
\end{array} \quad 3
\end{aligned}
$$

Some Sample Iterative Algorithms

Example: Horner's Algorithm for Polynomial Evaluation

```
    Input: x
        n
        a(0)...a(n)
Output: result
    Largest Exponent
    Coefficients of }\mp@subsup{x}{}{0}\ldots\mp@subsup{x}{}{n
```

```
result <-- a(n)
```

result <-- a(n)
index <-- n-1
index <-- n-1
while index>=0:
while index>=0:
result <-- x * result + a(index)
result <-- x * result + a(index)
decrement index by 1
decrement index by 1
end while
end while
output result

```
output result
```

 Value used to evaluate the polynomial
 Evaluation of the polynomial

Recursive Definitions

Definition: Recursive Definition

A complete recursive definition has three parts:
(a) The basis clause determines how trivial cases are to be handled
(b) The inductive clause describes complex problem instances in terms of simpler instances
(c) The extremal clause provides bounds on the

Recursive Definitions

Example:

Consider the sequence $S: 13,10,7,4,1$
Basis: $S_{1}=13$
Recurrence: $S_{n}=S_{n-1}-3$
Extremal: $1 \leq n \leq 5$
Consider the non-negative integers (Z^{*})
Basis: $1 \in \mathbb{Z}$
Recurrence: if $n \in \mathbb{Z}$, then $n+1 \in \mathbb{Z}$
Extremal: N/A
Consider general trees
Basis: Empty tree (0 nodes)
Recurrence: The root has >= 0 subtrees that are general trees
Extremal: N/A

Recursive Algorithms

Definition: Recursive Algorithm

A recursive algorithm express the solution to a task in terms of a simpler case of the same problem.

Aside: Control Structures in Programming Languages

1. Sequence
2. Selection
3. Iteration...or Recursion!

Example: Factorials

Definition: Factorial

The factorial of $n \in \mathbb{Z}^{*}$, denoted n !, is the product of all integers 1 through n, where $0!=1$.

An iterative factorial algorithm is easy to create:

```
product <-- 1
while n is larger than 1:
    product <-- product * n
    n<--n-1
end while
output product
```


Example: Factorials

Factorials can be easily computed recursively:

$$
\begin{aligned}
& 4!=4 \cdot 3 \cdot 2 \cdot 1 \\
& 4!=4 \cdot 3!
\end{aligned}
$$

But what are the Basis, Inductive, and Extremal clauses?

Basis: $\quad 0!=1$

Inductive: $n!=n \cdot(n-1)$!

Extremal:
$n!$ is defined $\forall n \in \mathbb{Z}^{*}$

Example: Factorials

Recursive pseudocode algorithm:

```
    subprogram factorial (given: n) returns: n!
    (Basis)
        if n is 0
                        return 1
        else
(Inductive)
                        answer <-- n * factorial(n-1)
        end if
    end subprogram
```

Extremal? Assumed!

Can We Prove Our Algorithm?

Conjecture: factorial(\mathbf{n}) returns n !
Proof (structural induction):
Basis: Let $n=0$. The algorithm returns 1 , and by definition, $0!=1.0 k!$

Inductive Step: If factorial(n) returns n !, then factorial $(\mathrm{n}+1)$ returns $(n+1)$!.

When the input is $(n+1)$, the algorithm will compute $(n+1)$! to be $(n+1) *$ factorial (n)
(Continues ...)

Can We Prove Our Algorithm?

By the Inductive Hypothesis, we know that
factorial(n) computes n !. And, from the recursive definition of factorial, we know that $n!*(n+1)=(n+1)!$.

Therefore, factorial(n) computes n !

Another Structural Induction Proof

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.

Proof (structural induction):
Basis: A binary tree with one node has 2 nulls. Ok! Inductive Step: If a binary tree of n nodes has $n+1$ nulls, then a binary tree of $n+1$ nodes has $n+2$ nulls.

There are three possible insertion situations

Another Structural Induction Proof

By the Inductive Hypothesis, we have n nodes and $n+1$ nulls in our tree.
Adding a leaf adds one node and two nulls, but occupies (removes) an existing null.
This is a net gain of one node and one null, giving a total of $n+1$ nodes and $n+2$ nulls, as desired.
(Proof Continues)

Another Structural Induction Proof

Case 2: Insert between nodes.
We add a node, occupy an existing null, and use one of its children, leaving one extra new null.

As before this is a gain of one node and one null.
(Proof Continues)

Another Structural Induction Proof

Case 3: Insert a new root.
We add a node and occupy of its nulls in referencing the old root. Again, a net gain of one node and one null.

Therefore, \#-nulls = 1+ \# nodes, for all non-empty binary trees

Example: Fibonacci Sequence

Definition: Fibonacci Sequence

The $n^{\text {th }}$ term of the Fibonacci sequence is the sum of terms $n-1$ and $n-2$, where $F(0)=0$ and $F(1)=1$

Recursively generating terms of the sequence is easy...

```
subprogram fibonacci (given: n) returns: nth term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```


Example: Fibonacci Sequence

... but inefficient!

Consider this tree of invocations resulting from fibonacci(5):

Note the three $f(2)$ trees and the two $f(3)$ trees
\Rightarrow Repeated (and therefore wasted) effort!

Extra Slides

Example: Euclidean Algorithm for GCDs

Theorem: GCD(a,b) $=\mathbf{G C D}(b, a \% b)$
Proof: See Rosen 8/e p. 283

Recursive pseudocode algorithm:

```
subprogram GCD (given: a,b) returns: gcd(a,b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD (b, a%b)
    return answer
end subprogram
```

Question: Is this more or less efficient than the iterative algorithm presented earlier?

Example: Sums of Odd Positive Integers

$$
\begin{array}{cccccccc}
\mathbb{Z}^{+}: 1 & 2 & 3 & 4 & \ldots & n & \frac{(m+1)}{2} \\
o: 1 & 3 & 5 & 7 & \ldots & 2 n-1 & m
\end{array}
$$

Let oddsum(term) represent the sum of $o(1)$ through o (term).
Base: oddsum(1) = 1
General: oddsum(term) =

$$
\text { oddsum(term-1) }+2 * \text { term }-1
$$

Example: Sums of Odd Positive Integers

Recursive implementation, using pseudocode:

```
subprogram oddsum (given: term)
        returns: sum from 1 through term of (2i-1)
    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1)+2*term-1
        return answer
    end if
end subprogram
```


Proving oddsum()

Conjecture: oddsum (t) produces $\sum^{t}(2 i-1), \forall t \geq 1$

Proof (structural induction):
Basis: Let $t=1$. The algorithm returns 1 , and $\sum_{i=1}^{1}(2 i-1)=1$. Ok! Inductive Step: If oddsum(t) returns $\sum_{i=1}^{t}(2 i-1)$,

$$
\text { then oddsum }(\mathrm{t}+1) \text { returns } \sum_{i=1}^{t+1}(2 i-1)
$$

(Continues ...)

Proving oddsum()

When given $t+1$, oddsum() returns oddsum $(\mathrm{t})+[2(t+1)-1]=$ oddsum $(\mathrm{t})+(2 t+1)$
By the Inductive Hypothesis, oddsum $(\mathrm{t})=\sum_{i=1}^{t}(2 i-1)$.
Substituting, oddsum($\mathrm{t}+1$) returns $\sum_{i=1}^{t}(2 i-1)+(2 t+1)$.
$2 t+1$ is the $(t+1)^{s t}$ term of the sequence; thus
$\sum_{i=1}^{t}(2 i-1)+(2 t+1)=\sum_{i=1}^{t+1}(2 i-1)$.
Therefore, oddsum(t) produces $\sum_{i=1}^{t}(2 i-1), \forall t \geq 1$

