Course Background

(Why you're here and what you learned to get here)

\& Math Review

What is Discrete Math?

Definition: Discrete Mathematics

Discrete Mathematics is the study of collections of distinct objects

Contrast this with "the calculus", which was developed by Newton and Leibniz to study objects in motion. As a result:

- Calculus tends to focus on real values
- Discrete Mathematics tends to focus on integer values

Sample Discrete Math Topics

Topics that fall under the umbrella of discrete math:

- Integral Functions and Relations
- Matrix Operations and Representations
- Sets
- Sequences and Summations
- Discrete Probability
- Counting (Permutations/Combinations, Recurrence Relations)

To understand those, you also need:

- First-Order logic
- Logical Arguments
- Proof Techniques
- ... and a fair amount of pre-calculus mathematics

How Discrete Math Relates to CS

Discrete Structures is an ACM/IEEE core curriculum topic

- See https://www.acm.org/binaries/content/assets/education/ cs2013 web final.pdf

DM topics underlie much of Computer Science, including:

- Logic -> Knowledge Representation, Reasoning, Natural Language Processing, Computer Architecture
- Proof Techniques -> Algorithm Design, Code Verification
- Relations -> Database Systems
- Functions -> Hashing, Programming Languages
- Recurrence Relations -> Recursive Algorithm Analysis
- Probability -> Algorithm Design, Simulation

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions

Common Fractional Equivalencies:
(a) $\frac{x}{z}+\frac{y}{z}=\frac{x+y}{z}$
(b) $\frac{x}{z}-\frac{y}{z}=\frac{x-y}{z}$
(c) $\frac{x}{z} \frac{y}{z}=\frac{x y}{z^{2}}$
(d) $\frac{\frac{x}{z}}{\frac{y}{z}}=\frac{x}{y}$
(e) $\frac{x}{w}+\frac{y}{z}=\frac{x z+y w}{w z}$
(f) $\frac{x}{w}-\frac{y}{z}=\frac{x z-y w}{w z}$
(g) $\frac{x}{w} \frac{y}{z}=\frac{x y}{w z}$
(h) $\frac{\frac{x}{w}}{\frac{y}{z}}=\frac{x z}{w y}$

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers

Definition: Rational Number

A value that can be expressed as the ratio of two integers

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets

Definition: Set

An unordered collection of unique objets. $S=\left\{x_{1}, x_{2}, \ldots\right\}$
Notation: $s \in S, \varnothing, \mathcal{U},\{x \mid f(x)$ is true $\}$
Other Definitions: Union, Intersection, Difference, Complement, Cardinality

Venn Diagrams:

Notations for Sets of Values

\mathbb{Z}
$\mathbb{Z}^{+}, \mathbb{N}^{+}$
$\mathbb{Z}^{*}, \mathbb{N}_{0}$
$\mathbb{Z}^{\text {even }}$
$\mathbb{Z}^{\text {odd }}$
\mathbb{Q}
$\frac{\mathbb{Q}}{\mathbb{Q}}$
\mathbb{R}

All integers
All positive integers
All non-negative integers
Even integers
Odd integers
Rational numbers
Irrational Numbers
The real values

$$
\begin{aligned}
& \{\ldots,-2,-1,0,1,2, \ldots\} \\
& \{1,2,3, \ldots\} \\
& \{0,1,2,3, \ldots\} \\
& \{\ldots,-4,-2,0,2,4, \ldots\} \\
& \{\ldots,-3,-1,1,3, \ldots\} \\
& \frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0 \\
& \{i \mid i \notin \mathbb{Q}\} \\
& \{\mathbb{Q} \cup \overline{\mathbb{Q}}\}
\end{aligned}
$$

Note: Avoid the term "natural numbers" and the symbol \mathbb{N}

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws

Definitions: Associative, Commutative, Distributive, and Transitive

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities

Rules for adding/subtracting, multiplying/dividing

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation

$$
\sum_{i=0}^{k} s(i) \quad \prod_{i=0}^{k} s(i)
$$

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation
- Integer Division (Modulo, Divides, Congruences)

Integer Division

Definition: Division

(Our standard definition of division, denoted a / b)
Definition: Integer Division
Integer division, denoted $a \backslash b$, returns the integer m such that
$a=m \cdot b+r$ where r is the remainder

Examples:

- $10 \backslash 4$

$$
10 \backslash 4=2, \quad 10=2 * 4+2
$$

- $1 \backslash 5$

$$
1 \backslash 5=0, \quad 1=0 * 5+1
$$

- 13\5

$$
13 \backslash 5=2, \quad 13=2 * 5+3
$$

Integer Division

Definition: Modulo

Denoted by \% or mod, the modulus operator gives the remainder of an integer division. This is expressed as $a \% b=r$, where r is the remainder when a is divided by b. In other words,
$a=m \cdot b+r, \quad(a, b, r, m) \in \mathbb{Z}$

Examples:

- $10 \% 4 \quad 10 \% 4=2,10=2 * 4+2$
- $1 \bmod 51 \bmod 5=1,1=0 * 5+1$
- $13 \% 513 \% 5=3,13=2 * 5+3$

Integer Division

Definition: Congruency

a is congruent to b modulo m, denoted $a \equiv b \bmod m$, if
$a \% m=b \% m$, or $(a-b) \% m=0$.
In other words:
If $a \% m=r_{1}$ and $b \% m=r_{2}$, then $r_{1}=r_{2}$
From here, we get the second form($(a-b) \% m=0)$:
Let $a=c \cdot m+r$ and $b=d \cdot m+r$ where $r=r_{1}=r_{2}$
So $a-b=c \cdot m+r-(d \cdot m+r)=(c-d) \cdot m$ which is clearly divisible by m

Integer Division

Definition: Congruency

a is congruent to b modulo m, denoted $a \equiv b \bmod m$, if $a \% m=b \% m$, or $(a-b) \% m=0$.

Examples:

- Is $10 \equiv 4 \bmod 3$?

$$
\begin{gathered}
10 \% 3=1 \quad(10=3 * 3+1) \\
4 \% 3=1 \quad(4=3 * 1+1) \\
(10-4) \% 3=0
\end{gathered}
$$

- Is $-3 \equiv 3$ mod 5 False.

$$
\begin{gathered}
-3 \% 5=2 \quad(-3=-1 * 5+2) \\
3 \% 5=3 \quad(3=5 * 0+3) \\
(-3-3) \% 5 \neq 0
\end{gathered}
$$

Integer Division

Definition: Divides

The "divides" operator, denoted $a \mid b$, returns True if $b \% a=0$ and False otherwise.

Examples:

- 6| $12 \quad 12 \% 6=0$, so it is True
- $12 \mid 6 \quad 6 \% 12=6$, so it is False
- 4 | $10 \quad 10 \% 4=2$, so it is False

Playposit Question:

Which of the following are True:
A. $5 \mid 10$
B. $10 \mid 5$
C. $5 \% 3=1$
D. $5 \backslash 3=1$
E. $13 \equiv 7 \bmod 3$

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Even and Odd Integers

Definition: Even
An integer n is even if there exists an integer k such that $n=2 k$

Definition: Odd
An integer n is odd if there exists an integer k such that
$n=2 k+1$

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Even and Odd Integers
- Logarithms and Exponents

Laws of Logarithms and Exponents

(a) $w^{x+y}=w^{x} w^{y}$
(b) $\left(w^{x}\right)^{y}=w^{x y}$
(c) $v^{x} w^{x}=(v w)^{x}$
(d) $\frac{w^{x}}{w^{y}}=w^{x-y}$
(e) $\frac{v^{x}}{w^{x}}=\left(\frac{v}{w}\right)^{x}$
(f) $\log _{b}\left(x^{y}\right)=y \log _{b} x$
(g) $\log _{b}(x y)=\log _{b} x+\log _{b} y$
(h) $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
(i) $b^{\log _{b} x}=x$
(j) $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
(k) If $b^{y}=x$, then $\log _{b} x=y$

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Even and Odd Integers
- Logarithms and Exponents
- Working with Quadratic Equations

Definitions: Quadratic equations, Factoring Quadratic Equations, Quadratic Formula

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Even and Odd Integers
- Logarithms and Exponents
- Working with Quadratic Equations
- Positional Number Systems

Decimal: Base 10, Digits 0-9
Binary: Base 2, Digits 0,1

Octal: Base 8, Digits 0-7
Hexadecimal: Base 16, Digits 0-9, A-F

Topics You May Need to Review

Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation
- Integer Division (Modulo, Divides, Congruences)
- Even and Odd Integers
- Logarithms and Exponents
- Working with Quadratic Equations
- Positional Number Systems

Read the Math Review handout on the course website

Homework 1

- Due THIS Friday (6/11) at 11:59pm MST
- Intended to be refresher on these math topics
- If you are not comfortable with these topics, read the math review excerpt from Dr. McCann's book, found on the webpage.

