CSc 245 Discrete Structures - Summer 2021
 Quiz \#6

Due: July 27th, 2021 by 11:59 pm (MST) Solutions

1. (10 points) Consider the following sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of integers: $1,9,25,49,81,121, \ldots$ (Note, the sequence starts at $n=1$ not $n=0$).
(a) (3 points) Give a simple function $f(n)$ such that $f(n)=s_{n}$ for $n \in \mathbb{Z}^{+}$.

$$
f(n)=(2 n-1)^{2}
$$

(b) (1 point) Using your answer to (a), give s_{10} and s_{13}.
$s_{10}=19^{2}=361$
$s_{13}=25^{2}=625$
(c) (6 points) Prove, using weak induction, that $\sum_{i=1}^{n} f(i)=\frac{4 n^{3}-n}{3}$ where $n \in \mathbb{Z}^{+}$and $f(n)$ is the function you identified in (a).

Proof (by induction): $f(n)=(2 n-1)^{2}$
Base case: Let $n=1$. $\sum_{i=1}^{n}(2 i-1)^{2}=(2(1)-1)^{2}=1 . \frac{4 n^{3}-n}{3}=\frac{4(1)-1}{3}=1$. Thus our base case is true.
Inductive Step: If $\sum_{i=1}^{k} f(i)=\frac{4 k^{3}-k}{3}$, then $\sum_{i=1}^{k+1} f(i)=\frac{4(k+1)^{3}-(k+1)}{3}$.

$$
\begin{aligned}
\sum_{i=1}^{k+1} f(i) & =\sum_{i=1}^{k} f(i)+f(k+1) \\
& =\frac{4 k^{3}-k}{3}+f(k+1)(\text { by our inductive hypothesis }) \\
& =\frac{4 k^{3}-k}{3}+(2(k+1)-1)^{2} \\
& =\frac{4 k^{3}-k}{3}+(2 k+1)^{2} \\
& =\frac{4 k^{3}-k}{3}+\left(4 k^{2}+4 k+1\right) \\
& =\frac{4 k^{3}-k+3\left(4 k^{2}+4 k+1\right)}{3} \\
& =\frac{4 k^{3}-k+12 k^{2}+12 k+3}{3}
\end{aligned}
$$

We know that $(k+1)^{3}=k^{3}+3 k^{2}+3 k+1$
We can modify our numerator as follows:
$4 k^{3}-k+12 k^{2}+12 k+3+1-1$
$=4\left(k^{3}+3 k^{2}+3 k+1\right)-k-1$
$=4\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1)$
$=4(k+1)^{3}-(k+1)$
So our fraction becomes:
$\frac{4 k^{3}-k+12 k^{2}+12 k+3}{3}$
$=\frac{4(k+1)^{3}-(k+1)}{3}$
Thus, $\sum_{i=1}^{k+1} f(i)=\frac{4(k+1)^{3}-(k+1)}{3}$. Therefore $\sum_{i=1}^{n} f(i)=\frac{4 n^{3}-n}{3}$ where $n \in \mathbb{Z}^{+}$.

