CSc 245 Discrete Structures - Summer 2021
 Quiz \#3

Due: June 29th, 2021 by 11:59 pm (MST)
 Solutions

1. $(5$ points) Show that when a and b are integers, $(a \bmod 2)(b \bmod 2)=a b \bmod 2$

Proposition: $(a \bmod 2)(b \bmod 2)=a b \bmod 2$
Proof (Direct): We know that we can rewrite any integer x in terms of another integer y using the quotient remainder form: $x=y m+r$ where m is the quotient, r is the remainder and $m, r \in \mathbb{Z}$. Using this definition, we can rewrite a and b in terms of the integer $2: a=2 k+r_{a}$ and $b=2 l+r_{b}$ where $k, l \in \mathbb{Z}$ and $r_{a}, r_{b} \in\{0,1\}$ (because those are the only possible remainders when dividing by 2).
Given these equations we get: $(a \bmod 2)=r_{a}$ and $(b \bmod 2)=r_{b}$ so $(a \bmod 2)(b \bmod 2)=r_{a} r_{b}$.
Now, multiplying $a * b$, we get:

$$
\begin{aligned}
a b & =\left(2 k+r_{a}\right)\left(2 l+r_{b}\right) \\
& =4 k l+r_{a}(2 l)+r_{b}(2 k)+r_{a} r_{b} \\
& =2\left(2 k l+l r_{a}+k r_{b}\right)+r_{a} r_{b} .
\end{aligned}
$$

Because $r_{a}, r_{b} \in\{0,1\}$, we know that $r_{a} r_{b}$ will either be 0 or 1 which means that we cannot factor it by 2 .
Since $r_{a} r_{b}$ cannot be factored by 2 , we know from the definition of the modulus operator, that $(2(2 k l+$ $\left.\left.l r_{a}+k r_{b}\right)+r_{a} r_{b}\right) \bmod 2=r_{a} r_{b}$. Thus, when a and b are integers, $(a \bmod 2)(b \bmod 2)=a b \bmod 2$
2. (5 points) Prove that for all integers n, if n is odd then $(-1)^{n}=-1$.

Proposition: For all integers n, if n is odd then $(-1)^{n}=-1$
Proof (direct): Let n be an odd integer. By definition of odd integers, we know that $\exists k \in \mathbb{Z}$ s.t. $\overline{n=2 k+1}$. Substituting $2 k+1$ for n and using the laws of exponents we get

$$
\begin{aligned}
(-1)^{n} & =(-1)^{2 k+1} \\
& =(-1)^{2 k} *(-1)^{1} \\
& =\left((-1)^{2}\right)^{k} *(-1)^{1} \\
& =(1)^{k} *(-1)^{1} \\
& =(1) *(-1)^{1} \\
& =(1) *(-1) \\
& =(-1)
\end{aligned}
$$

Therefore, when n is an odd integer, $(-1)^{n}=-1$

