CSc 245 Discrete Structures - Summer 2021
 Quiz \#5

Due: July 20th, 2021 by 11:59 pm (MST) Solutions

1. (1 point) What is the prime factorization of 360 ?
$360=2^{3} \cdot 3^{2} \cdot 5$
2. (1 point) Using their prime factorizations, find the greatest common divisor (GCD) of 360 and 270 .
$360=2^{3} \cdot 3^{2} \cdot 5$
$270=3^{3} \cdot 2 \cdot 5$.
$\operatorname{GCD}(270,360)=2 \cdot 3^{2} \cdot 5=90$.
3. (1 point) True or False: In the function $f(x)=x-1$ from $\{1,2,3,4\}$ to $\{0,1,2,3,4\}$, the codomain is equal to the range.

False
4. (3 points) Let $f(x)=x^{2}$ where $x \in \mathbb{Z}$. Determine if $f(x)$ can be inverted. Explain why or why not.

It cannot be inverted. $f(x)=f(-x)=y$ which means when we attempt to invert the function, we will get y mapping to both x and $-x$ which violates our definition of a function.
5. (4 points) Consider the relation $R=\{(\alpha, a),(\beta, d),(\gamma, d),(\delta, e)\}$ where the domain is $\{\alpha, \beta, \gamma, \delta\}$ and the codomain is $\{a, b, c, d, e\}$. Is R a function? Why or why not?

It is a function because very element in the domain maps to exactly one element in the codomain.

