Finite Probability

Probability

Definition: Probability

The probability that a specific event will occur is the ratio of the number of occurrences of interest to the number of possible occurrences

- The occurrences of interest are called \qquad .
- The set of possible occurrences is the Sample space (S)
- These are finites sets, hence the term finite probability
- The occurrence probability of an interest event:

$$
p(E)=\frac{|E|}{|S|}
$$

Probability

Please note: (a) $\forall e \in S, p(e)>0$
(b) $\sum_{e \in S} p(e)=1$

Example:

The probability of drawing a 10 from a 52 -card deck:
$p(E)=\frac{|E|}{|S|}=\frac{|\{10 C, 10 D, 10 H, 10 S\}|}{52}=\frac{1}{13}$
Roll a pair of 6-sided, fair dice. What is the probability of one showing a 4 and the other either a 1 or a 6 ?
$E=\{(4,1),(4,6),(1,4),(6,4)\} ; \quad|E|=4$
$S=$ all possible rolls of two dice; $\quad|S|=36$
Thus: $p(E)=\frac{|E|}{|S|}=\frac{4}{36}=\frac{1}{9}$

Applications of Counting to Probability

1. Probability of Winning the Powerball Lottery

To play: Choose 5 of 59 'white' and 1 of 35 'red' (Powerball) numbers. \# of ways to play?

There are $\binom{59}{5}$ ways to choose the whites, and $\binom{35}{1}$ ways to choose a red.

By the Multiplication Principle, there are
$\binom{59}{5} \cdot\binom{35}{1}=175,223,510$ ways to play
$p($ win $)=\frac{|E|}{|S|}=\frac{1}{175,223,510} \approx 5 \times 10^{-9}=0.000000005$

Applications of Counting to Probability

2. Principle of Inclusion-Exclusion

$$
\begin{aligned}
& \text { Recall: }\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right| \\
& p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

Example:

54 students: 28 freshman
(13 men, 15 women)
20 sophomores (12 men, 8 women) 6 juniors (5 men, 1 women)
The probability of drawing a woman's name:

$$
p(\text { woman })=\frac{15+8+1}{54}=\frac{4}{9}=0 . \overline{4}
$$

... of drawing either a woman (W) or a freshman (F)

$$
\begin{aligned}
p(W \cup F) & =p(W)+p(F)-p(W \cap F) \\
& =\frac{24}{54}+\frac{28}{54}-\frac{15}{54}=\frac{37}{54}=\left(1-\frac{17}{54}(\text { fraction of male non-freshman })\right)
\end{aligned}
$$

Probabilistic Reasoning

- Each drawer of a 3x2 dresser holds either a red or a blue T-shirt. One row of drawers has two red shirts, one row has two blue, and one row has one of each. You open one drawer and see a red T-shirt. What is the probability that the shirt in the other drawer is the same row is also red?

Probabilistic Reasoning

- One solution approach: Enumerate the possibilities. WLOG:

Open Drawer Containing	Shirt Color in Other Drawer?
R1	Red
R2	Red
R3	Blue

$p($ The opposite drawer has red $)=\frac{2}{3}$
Bertrand's Box Paradox (1889)

Probabilistic Reasoning

- Suppose you are on a game show, and you're given the choice of 3 doors: Behind one door is a car; behind the others goats. You pick a door, say No. 1, and the host who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you "Do you. Want to pick door No. 2?" Is it to your advantage to switch your choice?
- Reference:
- www.marilynvossavant.com/articles/gameshow.html

Care to Play?

URL: http://dcity.org/brain-games/three-door-dilemma

Probabilistic Reasoning

- But ... why? Three views:

1. Enumerate the Possibilities

WLOG, assume that we always pick door \#1
There are 3 possibilities:

Case	Door \#1	Door \#2	Door \#3	Host Reveals	Switch?
(a)	Car	Goat	Goat	\#2 or \#3	You lose!
(b)	Goat	Car	Goat	\#3	You wIn!
(c)	Goat	Goat	Car	\#2	You wIn!

$\therefore p(\mathbf{w i n})=\frac{2}{3}$ if you switch.

Probabilistic Reasoning

2. Car / Not Car

Consider a partitioning of the doors into two gropus: Selected and Unselected
$p($ Car behind Selected $)=\frac{1}{3}$ and
$p($ Car behind unselected $)=\frac{2}{3}$
After the host reveals a goat, those probabilities have not changed!
$p($ win without switching doors $)=\frac{1}{3}($ stay with Selected $)$
$p($ win after switching doors $)=\frac{2}{3} \quad$ (move to Unselected group)
\Rightarrow The remaining closed door represents the Unselected group

Extra Slides (not covered)

Conditional Probability

Example:

If we have one fair 6 -sided die:
$p(6)=\frac{1}{6} \quad p((6,6))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}$
Let E_{1} be rolling a 6 on the 1 st roll, $\& E_{2}$ a 6 on the 2 nd
There are 6 ways for each to occur, but what if E_{1} has already occurred?
In that case: $p\left(E_{2}\right)$ still is $\frac{1}{6}$ because the first rolls does not influence the second.
But ... what if the first does influence the second?

Conditional Probability

Definition: Conditional Probability

Let X and Y be events. The conditional probability of
X given Y, denoted $p(X \mid Y)$, is $\frac{P(X \cap Y)}{p(Y)}$

Example:

Continuing the students example, what is $P(W \mid F)$?

$$
\begin{aligned}
& p(W \mid F)=p(W \cap F) / P(F) \\
& =\frac{15}{54} / \frac{28}{54}=\frac{15}{28}=0.536 \ldots
\end{aligned}
$$

(Easy to see from 2 slides ago: 15 women of 18 freshman)
(Recall that $p(W)=\frac{24}{54}=\frac{4}{9}=0 . \overline{4}$)

Independence of Events

Recall: $p(A \mid B)=\frac{p(A \cap B)}{p(B)}$ Definition: Independent

Events A and B are independent if $p(A \mid B)=p(A)$

Example:

You flip a coin twice. The first flip comes up heads $\left(E_{1}\right)$ and the second tails $\left(E_{2}\right)$. Are these events independent?
$P\left(E_{1}\right)=\frac{|\{(H, H),(H, T)\}|}{|\{(H, H),(H, T),(T, T),(T, H)\}|}=\frac{1}{2}\left(p\left(E_{2}\right)=\frac{1}{2}\right.$, too $)$.
$p\left(E_{1} \cap E_{2}\right)=\frac{|\{(H, T)\}|}{4}=\frac{1}{4}$
$p\left(E_{2} \mid E_{1}\right)=\frac{p\left(E_{2} \cap E_{1}\right)}{p\left(E_{1}\right)}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}=p\left(E_{2}\right) \quad \therefore$ independent

Independence of Events

Example:

Events: $E=\{2,4,6\}, H=\{1,2,3\} \quad T=\{1,2,3,4\}$
Are E and H independent?
$p(E)=\frac{1}{2}, \quad p(H)=\frac{1}{2}, \quad p(T)=\frac{2}{3}, \quad p(E \cap H)=\frac{1}{6}$
$p(E \mid H)=\frac{p(E \cap H)}{p(H)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3} \neq p(E)$
$\therefore E$ and H are not independent!
Well ... why not??
(Continued ...)

Independence of Events

$E=\{2,4,6\}, H=\{1,2,3\} \quad T=\{1,2,3,4\}$
In our situation of $p(E \mid H)$, we are given that only 1,2 , or 3 was rolled. Only one of those shared with E, thus $p(E \mid H)=\frac{1}{3}$.
However, without the limitation of H, a roll will be a member of E without probability $\frac{1}{2}$.
This shows that the probability of E occurring changes if H is assumed to have occurred first. Thus, E is dependent on H, or E and H are not independent.

Note: E and T are independent:
$p(E \cap T)=\frac{1}{3}$, and so $p(E \mid T)=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}=p(E)$

Probabilistic Reasoning

Another approach to the door problem using conditional probability
3. Conditional Probability (Still assuming we pick door \#1)

Recall: $p(X \mid Y)=\frac{p(X \cap Y)}{p(Y)}$, or $P(Y) \cdot p(X \mid Y)=p(X \cap Y)$
Let C_{i} be the event that the car is behind door i, and
Let H_{k} be the event of the host opening door k

$$
\begin{aligned}
p(\text { win of switch }) & =p\left(H_{3} \cap C_{2}\right)+p\left(H_{2} \cap C_{3}\right) \\
& =p\left(C_{2}\right) \cdot p\left(H_{3} \mid C_{2}\right)+p\left(C_{3}\right) \cdot p\left(H_{2} \mid C_{3}\right) \\
& =\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 1 \\
& =\frac{2}{3}
\end{aligned}
$$

(Note the application of the Addition Principle!)

