Logic

What is Logic?

Definition: Philosophical Logic

The study of thought and reasoning, including arguments and proof techniques.

This is the classical notion of logic
Definition: Mathematical Logic
The use of formal languages and grammars to represent syntax and semantics of computation

Propositional Logic

Propositional Logic is part of Mathematical Logic. Versions include:

What we use in this course

- First Order Logic (FOL a.ka. First Order Predicate Calculus (FOPC)) includes simple term variables and quantifications
- Second Order Logic allows its variable to represent more complex structures (in particular, predicates)
- Modal Logic adds support for modalities; that is concepts such as possibility and necessity.

Why Are We Studying Logic?

Logic has many applications to computer science:

- Logic is the foundation of computer operation
- Logical conditions are common in programs:
- Selection: if (score $<=\max$) $\{\ldots\}$
- Iteration: while (i<limit \&\& list[i]! $=$ stopValue) ...
- Structures in computing have properties that need to be proven
- Examples: Trees, Graphs, Recursive Algorithms
- Whole programs can be proven correct
- Computational Linguistics must represent and reason about human language, and language represents thought (and thus logic)

Propositions

Definition: Proposition

A declarative sentence that is either true (T) or false (F), but not both.

Definition: Atomic (simple) proposition
A proposition that cannot be expressed in terms of simpler propositions (it includes no logical operators)

Propositions - Examples

- Propositions:
- $1+1=2$ (True)
- $2+2=5$ (False)
- Tucson summers never get above 100 degrees (False)
- Not Propositions:
- $x * y<z \quad$ (depends on x, y, z)
- What time is it? (Question)
- This sentence is false. (Paradox)

Playposit Question

- Which of the following are propositions?
- Red Rising is a great book.
- $x^{2}>15$
- I want a cat.
- $3^{2}>15$
- How hot is it outside?

Propositional Variables

- To reduce writing required, we label propositions with lower-case letters, called propositional variables.
- Examples:
- h: "Helena is the capital of Montana"
- For brevity, we use either:

1. A meaningful letter (h)
2. p, q, r, s,... (these are the standard letters used)

Examples

- Using the propositions from the last playposit question:
- r : Red Rising is a great book.
- c: I want a cat.
- $\mathrm{q}: 3^{2}>15$

Compound Propositions

Definition: Compound Proposition

A proposition formed by combining propositions using logical operators

What do we use to combine them?

Logical Operators

- Connective Logical Operators - Operators used to combine 2 or more propositions

1. Conjunctions
2. Disjunctions

- Logical Operators on a single proposition:

3. Negations

Conjunctions

Definition: Conjunction

A conjunction of p and q is the proposition " p and q "

- Conjunctions are denoted by $p \wedge q$
- They are only true when both p and q are true
- Examples:
- p : Rodger is a dog
- q : Rodger likes to bark at cats.

- $p \wedge q$: Rodger is a dog and likes to bark at cats.

In Programming...

- Let's say we are creating a program for finding a car
- People often want to cars with good gas mileage ($>30 \mathrm{mpg}$) and low cost ($<\$ 12,000$), so we write a function that checks this
def check_car(Car c):
return (c.gas_mileage > 30) \& \& (c.price < 12000);
g : the car (c) has gas mileage is greater than 30 mpg
p : the car (c) costs less than \$12,000
We can rewrite the return statement as :
return $g \wedge p$

Disjunctions

Definition: Disjunction

A disjunction of p and q is the proposition " p or q "

- Disjunctions are denoted by $p \vee q$
- Example:
- p: Harry will destroy the Horcruxes.
- q : Harry will find the Deathly Hallows.
- $p \vee q$: Harry will destroy the Horcruxes or find the Deathly Hallows.

Under what circumstances is $p \vee q$ true?

Disjunctions - Inclusive

- Proposition: Harry will destroy the Horcruxes (p) or find the Deathly Hallows (q)
- $p \vee q$ is true if:

1. p is true (Harry destroys the Horcruxes)
2. q is true (Harry finds the deathly hallows)
3. Both p and q are true, (Harry destroys the Horcruxes and finds the Deathly Hallows)

- Since the third option is acceptable, the disjunction is inclusive. By default, $p \vee q$ denotes inclusive disjunctions.

Disjunctions - Exclusive

- Consider the proposition: Harry will destroy the Horcruxes (p) or Voldemort will be immortal (q)
- $p \vee q$ is true if:

1. p is true (Harry destroys the Horcruxes)
2. q is true (Voldemort is immortal)

- But it's not true if:
- Both p and q are true, (Harry destroys the Horcruxes but Voldemort is still immortal.)
- Since the third option is not acceptable, the disjunction is exclusive. This is denoted by $p \oplus q$ (or XOR).

Disjunction Examples

- The computer was a MacBook or a Thinkpad
- For dessert, you can have cake or ice cream
- His birthday is in June or July.

Playposit Question

- Which of the following are exclusive disjunctions?
- My favorite show is either The Office or Brooklyn 99
- You can major in CS or Math
- For Saturday, I will bake rye cookies or apple cake.
- At 7pm, we will walk Rodger or go to Andrew's house
- Tomorrow, the high will be above 90 or below 80

In Programming...

- Let's say we are creating a program for finding a restaurant
- You want to eat burgers or Mediterranean food.

```
def check_restaurant(Restaurant r):
        return (r.type=="Mediterranean")||
        (r.has_burgers==true)
```

m : the restaurant (r) serves Mediterranean food
b : the restaurant (r) serves burgers
We can rewrite the return statement as:
return $m \vee b$

In Programming...

- If we wanted a Restaurant that either serves steak or vegan food
def check_restaurant(Restaurant r): return (r.has_steak==true)^(r.is_vegan==true)
s : the restaurant (r) serves steak
v : the restaurant (r) is vegan
We can rewrite the return statement as:
return $s \vee v$

Negation

Definition: Negation

The negation of proposition p, is the statement "it is not the case that p."

- Negations are denoted by $\neg p$ (also denoted \bar{p})
- Example:
- p : I love computers
$\bullet \neg p$: It is not the case that I love computers
- I do not love computers
- I hate computers

- p: Eleanor took a nap
- $\neg p$:Eleanor did not take a nap
- Eleanor skipped her nap
- $\neg p$: they will lose the game
- p : they will win the game

In Programming...

- We are writing a program to decide what board game to play.
- We don't want to play a card game

```
def check_game(Game g):
    return !(g.card == true)
```

c : the game (g) is a card game
We can rewrite the return statement as: return $\neg c$

Playposit Question

- Which of the following are negations of "Olives are delicious"?
- Olives are gross.
- Pickles are delicious.
- Olives taste bad.
- Olives are not delicious.
- Olives are too squishy.

Truth Tables

- Truth tables show us all possible truth values of a given proposition
- Structure of truth table for $\neg(p \wedge q)$:

Truth Tables

- Truth tables of \wedge, \vee, \oplus, and \neg.

		(\neg)
	p	$\neg p$
	T	F
	F	T
		(V)
p	q	$(p \vee q)$
T	T	T
T	F	T
F	T	T
F	F	F

$\operatorname{AND}(\wedge)$			
p	q	$(p \wedge q)$	
\mathbf{T}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{F}	

$\mathrm{XOR}(\oplus)$		
p	q	$(p \oplus q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Truth Tables

- Break down the compound proposition so that we have 1 column for each nested proposition:

Example: $\neg(p \wedge q) \vee \neg r$
There are 7 nested propositions :
The three, labeled, atomic propositions: p, q, r
Four compound proposition to build to the final one:

$$
p \wedge q, \quad \neg(p \wedge q), \neg r, \quad \neg(p \wedge q) \vee \neg r
$$

Truth Tables

- Example: $\neg(q \wedge p) \vee \neg s$

p	q	S	$(q \wedge p)$	$\neg(q \wedge p)$	$\neg S$	$\neg(q \wedge p) \vee \neg s$
T	T	T	T	F	F	F
T	T	F	T	F	T	T
T	F	T	F	T	F	T
T	F	F	F	T	T	T
F	T	T	F	T	F	T
F	T	F	F	T	T	T
F	F	T	F	T	F	T
F	F	F	F	T	T	T

Playposit Question

How may columns will the proposition $\neg q \vee(p \wedge q)$ have?
A. 3
B. 4
C. 5
D. 6
E. 7

Playposit Question

- Which of the blanks in the truth table below (labeled (1), (2),(3) and (4)) evaluate to TRUE?

p	q	$\neg q$	$(p \wedge q)$	$\neg q \vee(p \wedge q)$
T	T	F	T	(1)
T	F	T	F	(2)
F	T	F	F	(3)
F	F	T	F	(4)

Precedence of Logical Operators

- Rosen suggests the precedence order:

Precedence	Operator
Highest	\neg
	\wedge
Lowest	\vee
\rightarrow	\rightarrow
	(we'll cover these soon)

- There is disagreement among mathematicians
- Always use parentheses to avoid confusion

Operator Associativity

- Given $\neg \neg p$, we evaluate it right to left, $\neg(\neg p)$
- Negation is right associative
- Given $p \wedge q \wedge r$, we evaluate it left to right $(p \wedge q) \wedge r$
- This holds for \vee and \oplus
- Conjunctions and both disjunctions are left associative

Precedence of Logical Operators

Example: $\quad \neg p \wedge r \vee \neg q \vee s$

This will be evaluated as: $(((\neg p) \wedge r) \vee(\neg q)) \vee s)$

Precedence	Operator
Highest	\neg
	\wedge
	\vee
Lowest	\rightarrow
	\leftrightarrow

To ensure that we read it correctly, it's better to write your compound propositions like this!

Playposit Question

Based on the precedence table and operator associativity rules in the previous 2 slides, which of the following correctly adds parentheses to $q \vee \neg p \wedge \neg s \vee q$?
A. $q \vee \neg(p \wedge \neg(s \vee q))$
B. $(q \vee \neg p) \wedge(\neg s \vee q)$
C. $q \vee(\neg p \wedge \neg(s \vee q))$
D. $(q \vee(\neg p \wedge \neg s)) \vee q$

In Programming...

- Programs evaluate logic in a similar way.
- Consider the Java code:

```
int x = 10;
int y = 8;
System.out.println((y==8)||(y==7)&&!(x==10));
```

- Java follows our precedence table and the proposition as follows:

| $(y==8)(y==7)(x==10)$ | $!(x==10)$ | $(y==7) \& \&$
 $!(x==10)$ | $(y==8)\|\mid$
 $(y=7) \& \&$
 $!(x==10)$ |
| :---: | :---: | :---: | :---: | :---: |
| T F T | F | F | T |

In Programming...

- Programs evaluate logic in a similar way.
- Consider the Java code:

$$
\text { int } \mathrm{x}=10 \text {; }
$$

Use Parentheses!

```
int y = 8;
```

System.out. println((y==8)||(y==7)\&\&!(x==10));

- If Java treated \&\& and || equally and just evaluated left to right:

| $(y==8)(y==7)(x==10)$ | $(y==8)\|\mid$
 $(y==7)$ | $!(x==10)$ | $(y==8)\|\mid$
 $(y=7) \& \&$
 $!(x==10)$ |
| :--- | :---: | :---: | :---: | :---: |
| T F T | T | F | F |

Equivalence of Propositions

Definition: Logically Equivalent

Two propositions p and q are logically equivalent if they have the same truth values in all possible inputs

- Equivalences are denoted by $p \equiv q$
- Example: is $p \equiv(p \wedge q) \vee p$?

p	q	$(p \wedge q)$	$(p \wedge q) \vee p$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Equivalence of Propositions

- Example: Distributive Law - $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$

p q r	$(q \vee r)$	$p \wedge(q \vee r)$	$(p \wedge q)$	$(p \wedge r)$	$(p \wedge q) \vee(p \wedge r)$
T T T	T	T	T	T	T
T T F	T	T	T	F	T
T F T	T	T	F	T	T
T F F	F	F	F	F	F
F T T	T	F	F	F	F
F T F	T	F	F	F	F
F F T	T	F	F	F	F
F F F	F	F	F	F	F

Playposit Question

Given the truth table below, which of the following is not an equivalence:

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$\neg(p \wedge q)$	$\neg(\neg p)$	$\neg p \vee \neg q$	$\neg(\neg p \vee \neg q)$
T	T	F	F	T	F	T	F	T
T	F	F	T	F	T	T	T	F
F	T	T	F	F	T	F	T	F
F	F	T	T	F	T	F	T	F

A. $\neg(\neg p \wedge \neg q) \equiv p \wedge q$
C. $p \equiv \neg(\neg p)$
B. $\neg q \equiv \neg p$
D. $\neg(p \wedge q) \equiv \neg p \wedge \neg q$

Converting Natural Language to Propositions

Converting Natural Language to Propositions

- Is The sky is cloudy a proposition?
- Yes, it is an atomic proposition
- Is the following sentence a proposition?
- Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.
- Yes!
- It is a compound proposition built of 3 atomic propositions

Converting Natural Language to Propositions

- Step 1: Identify the atomic (simple) propositions

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Converting Natural Language to Propositions

- Step 2: Assign easy to remember statement labels

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.
m

Converting Natural Language to Propositions

- Step 3: Identify the logical operators

Either Walter deposits his mortgage payment Or else he will lose his house and move in with Donna.

Negation
Conjunction

Converting Natural Language to Propositions

- Step 4: Construct the matching logical expression

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Negation
Conjunction

$d \oplus(\neg k \wedge m)$

Playposit Question

Which of propositional logic statement correctly represents the following English statement:
"You drive to campus and either pay for parking or get a parking ticket"

Let d : you drive to campus,
p : you pay for parking,
t : you get a parking ticket

$$
\begin{array}{ll}
\text { A. } d \wedge(p \oplus t) & \text { C. } d \wedge(p \vee t) \\
\text { B. }(d \wedge p) \oplus t & \text { D. }(d \wedge p) \vee t
\end{array}
$$

Converting Natural Language to Propositions

- Why do we need to do this?
- Expressing Program Conditions
($x!=6$) or ($\mathrm{y}==$ ' Y ') and flag
- Natural Language Understanding
"Route me to campus with a stop for gas."
- Proof Setup

Converting conjectures to logic:
"The sum of the squares of two odd integers is never a perfect square"

Three Categories of Propositions

Definition: Tautology
A proposition that is always true, no matter the truth values of proposition variables

Definition: Contradiction
A proposition that is always false, no matter the truth values of proposition variables

Definition: Contingency
A proposition that is neither a tautology or
contradiction

Three Categories of Propositions

- Examples:

Tautology		
p	$\neg p$	$(p \vee \neg p)$
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}

Contradiction

p	$\neg p$	$(p \wedge \neg p)$
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}

Contingency

p	q	$(p \wedge q)$	$(p \wedge q) \vee p$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Playposit Question

Which of the following is true?
A. $\neg p$ is a contingency, $p \vee \neg p$ is a contradiction, and $p \wedge \neg p$ is a tautology?
B. $p \wedge \neg p$ is a contingency, $\neg p$ is a contradiction, and $p \vee \neg p$ is a tautology?
C. $p \wedge \neg p$ is a contingency, $p \vee \neg p$ is a contradiction, and $\neg p$ is a tautology?
D. $\neg p$ is a contingency, $p \wedge \neg p$ is a contradiction, and $p \vee \neg p$ is a tautology?

Aside: Logical Bit Operations

- Bit operations correspond to logical connectives

Logical Operator	Bit Operato	Name	Example
\neg	\sim	Complement (not)	$\sim 1100=0011$
\wedge	\&	AND	$\begin{array}{r} 1100 \\ \& 1011 \\ \hline 1000 \end{array}$
V	\|	OR	$\begin{array}{r} 1100 \\ \mid \quad 1011 \\ \hline 1111 \end{array}$
\bigoplus	\wedge	XOR	$\begin{array}{r} 1100 \\ \times 1011 \\ \hline 0111 \end{array}$

Aside: Logical Bit Operations

- Default Linux File Permissions
- Defined for 3 user types: owner, group members, and everyone else.
- 3 permission types: read (r), write (w), and execute (x)
\$ 1s -1
-rw-rw-rw- 1 rjf users 836 Nov 10 16:33 filename.mdwn
- Default file creation permission: rw-rw-rw-
- Can use linux umask utility to change file permissions

Aside: Logical Bit Operations

- Default Linux File Permissions
\$ 1s -1
-rw-rw-r-- 1 liw liw 836 Nov 10 16:33 drafts/liw-permissions.mdwn
[unmask] 000011111
[complement of unmask] [default permissions]
[the file's permissions]

$$
\&\left[\begin{array}{c}
111100000 \\
110110110 \\
\begin{array}{c}
110100000 \\
\text { rw- r-- --- }
\end{array}
\end{array}\right.
$$

Playposit Question

- What is the result of the following bit operation (include any leading zeros, if necessary)

101011
\& 101100

Conditional Propositions

Conditional Propositions

Definition: Conditional Proposition

A conditional proposition is one that can be
expressed as "if p then q ", denoted $p \rightarrow q$, where p and q are propositions.

- Example:
- If the doorbell rings, then my dog will bark.

Conditional Propositions

- In "if p then q ", p and q are known by various names:

p	q	
(1) Antecedent	-	consequent
(2) Hypothesis	-	conclusion
(3) Sufficient	-	necessary

- Common forms of "if p then q ":
\triangleright if p, then q
\triangleright if p, q
$\triangleright p$ implies q
$\triangleright p$ only if q
$\triangleright p$ is sufficient for q
\triangleright a necessary condition for p is q
$\triangleright q$ unless $\neg p$
$\triangleright q$ if p
$\triangleright q$ when p
$\triangleright q$ whenever p
$\triangleright q$ follows from p
$\triangleright q$ is necessary for p
\triangleright a sufficient condition for q is p
$\triangleright q$ provided that p

Conditional Propositions

- Example: Rewrite the proposition in the given from:
- If the bike has 2 wheels you can ride it.

You can ride the bike if it has 2 wheels

- The engine will start only if the tank has fuel.

If the engine will start then the tank has fuel

Playposit Question

Write the following conditional proposition in the specified form:

"When I am bored, I watch The Office"

Truth of Conditional Propositions

- When are conditionals 'true'?

If the doorbell rings, then my dog will bark.

- The possibilities:

1. Antecedent true, Consequent true; statement is: \mathbf{T}
2. Antecedent true, Consequent false; statement is: \mathbf{F}
3. Antecedent false, Consequent true; statement is: \mathbf{T}
4. Antecedent false, Consequent false; statement is: \mathbf{T}

Truth of Conditional Propositions

- Example:

$$
\begin{aligned}
& \text { if } \quad(y<x)\{ \\
& \quad \begin{array}{l}
\text { int temp }=x ;
\end{array} \\
& \quad x=y ; \\
& \quad y=\text { temp; }
\end{aligned}
$$

Truth of Conditional Propositions

- Example:

When \mathbf{p} is False, \mathbf{q} is irrelevant, yet the Java statement is still legal (or True)

Truth of Conditional Propositions

- Other Examples:
- "If elected, I will lower taxes."
- "If it is below 90 this evening, I will go for a run".
- "If it rains today, I won't water my plants."
- "If you push on the door, it will open"

Playposit Question

Select all propositions that cause the following conditional proposition to be true:

If I get a cat, then my dog will chase it.

- I don't get a cat
- I get a cat and my dog does not chase it.
- I get a cat and my dog chases it

Equivalences of OR, AND, Implication

- Truth tables for OR, AND, and Implication

All 3 operators have one value that differs!

		$\mathrm{OR}(\bigvee)$
p	q	$(p \vee q)$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

	$\operatorname{AND}(\wedge)$	
p	q	$(p \wedge q)$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

$$
\text { Implies }(\rightarrow)
$$

p	q	$\neg p$	$(\neg p \vee q)$	$\neg q$	$(p \wedge \neg q)$	$\neg(p \wedge \neg q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

Inverse, Converse, \& contianositive

Definition: Inverse

Given $p \rightarrow q$, the inverse is $\neg p \rightarrow \neg q$

Definition: Converse

Given $p \rightarrow q$, the converse is $q \rightarrow p$

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Note: Inverse \equiv Converse $\not \equiv$ Original

Inverse, Converse, \& Contrapositive

Definition: Contrapositive

Given $p \rightarrow q$, the contrapositive is $\neg q \rightarrow \neg p$

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$	$\neg p \rightarrow \neg q$	$q \rightarrow p$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Note: $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Examples: English Translation

- Proposition: If you got an A on the final, you pass the class.
- Converse: If you pass the class, you got an A on the final.
- Inverse: If you did not get an A on the final, you do not pass the class.
- Contrapositive: If you do not pass the class, you did not get an A on the final.

Playposit Question

Give the inverse, converse and contrapositive of the following proposition:
"If I play squash, then I will eat Time Market pizza."
Inverse: If \qquad then \qquad
Converse: If \qquad then \qquad
Contrapositive: If \qquad then

English -> Logic

- Remember our steps for converting natural language to propositional logic:
- Step 1: Identify the atomic (simple) propositions
- Step 2: Assign easy to remember statement labels
- Step 3: Identify the logical operators
- Step 4: Construct the matching logical expression

English -> Logic

- Translate the proposition: When she loses the poker tournament, she will keep her job and won't buy a round of drinks
- Following our step defined earlier:

When she loses the poker tournament, she will keep her job and won't buy a round of drinks
p : she wins the poker tournament
j : she will keep her job
d : she will buy a round of drinks

English -> Logic

- Translate the proposition: When she loses the poker tournament, she will keep her job and won't buy a round of drinks
- Following our step defined earlier:

$$
\neg p \rightarrow(j \wedge \neg d)
$$

English -> Logic

- Translate the proposition: If I don't take my dog for a walk or a run, then he won't be tired for bed.
- Following our step defined earlier:

If I don't take my dog for a walk or a run, then he won't be tired for bed.
$w:$ I take my dog for a walk
r : I take my dog for a run
t : he is tired for bed

English -> Logic

- Translate the proposition: If I don't take my dog for a walk or a run, then he won't be tired for bed.
- Following our step defined earlier:
 won't be tired for bed.

English -> Logic

- Translate the proposition: If I don't take my dog for a walk or a run, then he won't be tired for bed.
- Following our step defined earlier:
 won't be tired for bed.

Two possibilities: (1) ($\neg w \oplus \neg \tau) \rightarrow \neg t \quad$ (2) $\neg(w \oplus r) \rightarrow \neg t$

Which is correct?

English -> Logic

- Translate the proposition: If I don't take my dog for a walk or a run, then he won't be tired for bed.
- Following our step defined earlier:
 won't be tired for bed.

Two possibilities: (1) $(\neg w \oplus \neg \tau) \rightarrow \neg t \quad$ (2) $\neg(w \oplus r) \rightarrow \neg t$
Consider English Contrapositive: If my dog is tired for bed, I took him for a walk or a run.
This $[t \rightarrow(w \oplus r)]$ is the contrapositive of (2) so (2) is correct.

English -> Logic

- Translate the proposition: If I don't take my dog for a walk or a run, then he won't be tired for bed.
- Following our step defined earlier:
 won't be tired for bed.

Two possibilities: (1) $(\neg w \oplus \neg) \rightarrow \neg t \quad$ (2) $\neg(w \oplus r) \rightarrow \neg t$
This $[t \rightarrow(w \oplus r)]$ is the contrapositive of (2) so (2) is correct.

$$
\text { Note: } w \oplus r \equiv \neg w \oplus \neg r \not \equiv \neg(w \oplus r)
$$

Playposit Question

What is the propositional representation for the following statement:
"I will go skiing only if there is snow and I don't have work"
Where $s: I$ go skiing, $n:$ there is snow, $w: I$ have to work

$$
\begin{array}{ll}
\text { A. } s \rightarrow(n \wedge \neg w) & \text { C. } s \rightarrow(n \wedge w) \\
\text { B. }(n \wedge \neg w) \rightarrow s & \text { D. }(n \wedge w) \rightarrow s
\end{array}
$$

Biconditional Propositions

Biconditional Propositions

- What is the meaning of:

A triangle is equilateral if and only if all three angles are equal

$$
\begin{array}{ccc}
\text { IF } & \text { AND } & \text { ONLY IF } \\
\hline t \text { if } a & & t \text { Only if } a \\
\text { if } a \text {, then } t & & \text { if } t \text {, then } a \\
a \rightarrow t & \wedge & t \rightarrow a \\
(a \rightarrow t) \wedge(t \rightarrow a)
\end{array}
$$

Biconditional Propositions

Definition: Biconditional Proposition

A biconditional statement is the proposition
" p if and only if q " (p iff q). It is denoted by the symbol $\leftrightarrow(p \leftrightarrow q)$.

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$	$p \leftrightarrow q$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
F	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Biconditionals and Logical Equivalence

- Previously, we defined Logically Equivalent as

Two propositions p and q are logically equivalent if they have the same truth values in all possible inputs

- We can introduce a second definition using

Biconditionals

- Before we do that:
- Remember: Tautology

A proposition that is always true, no matter the truth values of proposition variables

Biconditionals and Logical Equivalence

Definition: Logically Equivalent (2)

Two propositions p and q are logically equivalent $(p \equiv q)$ if $p \leftrightarrow q$ is a tautology

- Example: $p \equiv(p \wedge q) \vee p$

p	q	$(p \wedge q)$	$(p \wedge q) \vee p$	$p \leftrightarrow(p \wedge q) \vee p$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
F	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}

Playposit question

Using the below truth table, is $(\neg p \vee q) \equiv p \rightarrow q$?

p	q	$(\neg p \vee q)$	$p \rightarrow q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

A. Yes, they are equivalent.
B. No, they are not equivalent.

De Morgan's Laws

1. $\neg(p \wedge q) \equiv \neg p \vee \neg q$
2. $\neg(p \vee q) \equiv \neg p \wedge \neg q$

- Show $\neg(p \wedge q) \equiv \neg p \vee \neg q$:

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$\neg(p \wedge q)$	$\neg p \vee \neg q$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}

Example: Using De Morgan’s

1. $\neg(p \wedge q) \equiv \neg p \vee \neg q$
2. $\neg(p \vee q) \equiv \neg p \wedge \neg q$

- Show $\neg(a \vee(b \vee c)) \equiv \neg a \wedge \neg b \wedge \neg c$.

$$
\begin{aligned}
\neg(a \vee(b \vee c)) & \equiv \neg a \wedge \neg(b \vee c) & & (\text { De Morgan 2) } \\
& \equiv \neg a \wedge(\neg b \wedge \neg c) & & (\text { De Morgan 2) } \\
& \equiv \neg a \wedge \neg b \wedge \neg c & & (\text { Associativity of } \wedge)
\end{aligned}
$$

Example: De Morgan's Laws and Programming

- Checking to see if a score is not a ' B '
- Version 1: $\frac{(x<80)}{p}\left|\left\lvert\, \frac{(x>=90)}{q}\right.\right.$

- Version 2: $\left.!\frac{(x>=80}{\neg p} \& \& \frac{x<90}{\neg q}\right)$

$$
\begin{aligned}
p \vee q & \equiv \neg \neg(p \vee q) & & \text { Double negative } \\
& \equiv \neg(\neg p \wedge \neg q) & & \text { De Morgan’s (2) }
\end{aligned}
$$

Playposit Question

Which of the following is the complete simplification of

$$
\neg(\neg p \wedge(p \vee q)) ?
$$

A. $\neg p \vee \neg(p \vee q)$
B. $p \vee \neg(p \vee q)$
C. $p \vee(\neg p \wedge \neg q)$
D. $p \vee(p \wedge q)$

Common Logical Equivalences

Table I: Some Equivalences using AND (\wedge) and $O R(\vee)$:
(a)
a)

$p \wedge p \equiv p, \quad p \vee p \equiv p$
$p \vee \mathbf{T} \equiv \mathbf{T}, \quad p \wedge \mathbf{F} \equiv \mathbf{F}$
$p \wedge \mathbf{T} \equiv p, \quad p \vee \mathbf{F} \equiv p$
$p \wedge q \equiv q \wedge p$
$p \vee q \equiv q \vee p$
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
$(p \vee q) \vee r \equiv p \vee(q \vee r)$
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
$p \wedge(p \vee q) \equiv p$
$p \vee(p \wedge q) \equiv p$

Idempotent Laws
Domination Laws
Identity Laws
Commutative Laws

Associative Laws

Distributive Laws

Absorption Laws

Table II: Some More Equivalences (adding \neg):
(a)

$\neg(\neg p) \equiv p$
$p \vee \neg p \equiv \mathbf{T}, \quad p \wedge \neg p \equiv \mathbf{F}$
$\neg(p \wedge q) \equiv \neg p \vee \neg q$
$\neg(p \vee q) \equiv \neg p \wedge \neg q$

Common Logical Equivalences

Table III: Still More Equivalences (adding \rightarrow):

(a)	$p \rightarrow q \equiv \neg p \vee q$	Law of Implication
(b)	$p \rightarrow q \equiv \neg q \rightarrow \neg p$	Law of the Contrapositive
(c)	$\mathbf{T} \rightarrow p \equiv p$	"Law of the True Antecedent"
(d)	$p \rightarrow \mathbf{F} \equiv \neg p$	"Law of the False Consequent"
(e)	$p \rightarrow p \equiv \mathbf{T}$	Self-implication (a.k.a. Reflexivity)
(f)	$p \rightarrow q \equiv(p \wedge \neg q) \rightarrow \mathbf{F}$	Reductio Ad Absurdum
(g)	$\neg p \rightarrow q \equiv p \vee q$	
(h)	$\neg(p \rightarrow q) \equiv p \wedge \neg q$	
(i)	$\neg(p \rightarrow \neg q) \equiv p \wedge q$	
(j)	$(p \rightarrow q) \vee(q \rightarrow p) \equiv \mathbf{T}$	Totality
(k)	$(p \wedge q) \rightarrow r \equiv p \rightarrow(q \rightarrow r)$	Exportation Law (a.k.a. Currying)
(I)	$(p \wedge q) \rightarrow r \equiv(p \rightarrow r) \vee(q \rightarrow r)$	
(m)	$(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$	
(n)	$p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$	
(o)	$p \rightarrow(q \vee r) \equiv(p \rightarrow q) \vee(p \rightarrow r)$	
(p)	$p \rightarrow(q \rightarrow r) \equiv q \rightarrow(p \rightarrow r)$	Commutativity of Antecedents

Common Logical Equivalences

Table IV: Yet More Equivalences (adding \oplus and \leftrightarrow):

You do not need to memorize these tables...
...but you do need to know how to use them!

Applications of Logical Equivalences

- Question: Is $(p \wedge q) \rightarrow p$ is a tautology? (1)
- Using Truth tables, we see:

p	q	$(p \wedge q)$	$(p \wedge q) \rightarrow p$
T	T	T	\mathbf{T}
T	F	F	\mathbf{T}
F	T	F	\mathbf{T}
F	F	F	\mathbf{T}

- Because the expression evaluates to True for all possible truth values, the expression is a tautology.

Applications of Logical Equivalences

- Question: Is $(p \wedge q) \rightarrow p$ is a tautology? (2)
- By application of logical equivalences

$$
\begin{aligned}
(p \wedge q) \rightarrow p & \equiv p \rightarrow(q \rightarrow p) & & \text { Table 3 (k) } \\
& \equiv q \rightarrow(p \rightarrow p) & & \text { Table 3 (p) } \\
& \equiv q \rightarrow \mathrm{~T} & & \text { Table 3 (e) (reflexivity) } \\
& \equiv \neg q \vee \mathrm{~T} & & \text { Law of Implication } \\
& \equiv \mathrm{T} & & \text { Law of Domination }
\end{aligned}
$$

Applications of Logical Equivalences

- Question: Is $(p \wedge q) \rightarrow p$ is a tautology? (3)
- By reasoning:
- When p is True: $(\mathrm{T} \wedge q) \rightarrow \mathrm{T} \equiv \mathrm{T}$
- Anything $\rightarrow \mathrm{T}$ is T (by the definition of \rightarrow)
- When p is False:

$$
\begin{aligned}
(\mathrm{F} \wedge q) \rightarrow \mathrm{F} & \equiv \mathrm{~F} \rightarrow \mathrm{~F} \\
& \equiv \mathrm{~T}
\end{aligned}
$$

- Thus, $(p \wedge q) \rightarrow p$ is a tautology?

What we just learned

- Three quick ways to prove that something is a tautology:

1. Truth Table: Do all cases resolve to TRUE?
2. Logical Equivalences: Can we convert the expression to TRUE?
3. Reasoning: Any argument you make; our example did "proof by cases".

Proving that something is a contradiction

- How to prove that something is a contradiction:

1. Truth Table: Do all cases resolve to FALSE?
2. Logical Equivalences: Can we convert the expression to FALSE?
3. Reasoning: Any argument you make.
4. Bonus: Negate the expression and prove that it is a tautology!

Proving that something is a contingency

- How to prove that something is a contingency:

1. Truth Table: can we find one case that resolves to TRUE and another that resolves to FALSE?
2. Logical Equivalences: Can we convert the expression to a simpler expression which is obviously a contingency?
3. Reasoning: Any argument you make. Typically involves simplifying the expression (as with logical equivalences)

Applications of Logical Equivalences

- Programming Example: Assume games is an integer
if $\left((\right.$ games $<=10 \|$ ties $\left.>2) \& \& \frac{\text { games }>=11)}{\neg g}\right)$
- Let g :games $<=10$ and t :ties >2

$$
\begin{aligned}
(g \vee t) \wedge \neg g & \equiv(g \wedge \neg g) \vee(t \wedge \neg g) & & \text { Distribution } \\
& \equiv \mathrm{F} \vee(t \wedge \neg g) & & \text { Negation } \\
& \equiv(t \wedge \neg g) & & \text { Identity }
\end{aligned}
$$

Thus we can rewrite the statement more efficiently as: if (ties $>2 \& \&$ games $>=11$) ...

Applications of Logical Equivalences

- Question: Are $(p \wedge q) \vee(p \wedge r)$ and $p \wedge \neg(\neg q \wedge \neg r)$ logically equivalent?

$$
\begin{aligned}
(p \wedge q) \vee(p \wedge r) & \equiv p \wedge(q \vee r) & & \text { Distributive Law } \\
& \equiv p \wedge(\neg q \rightarrow r) & & \text { Table 3(g) } \\
& \equiv p \wedge \neg \neg(\neg q \rightarrow r) & & \text { Double Negation } \\
& \equiv p \wedge \neg(\neg q \wedge \neg r) & & \text { Table 3(h) }
\end{aligned}
$$

$(p \wedge q) \vee(p \wedge r) \equiv p \wedge(q \vee r)$
$\equiv p \wedge \neg \neg(q \vee r) \quad$ Double Negation
$\equiv p \wedge \neg(\neg q \wedge \neg r) \quad$ De Morgan's

Playposit Question

Which equivalences from table 3 are used in the following:
Table III: Still More Equivalences (adding

$$
\begin{aligned}
& \neg(p \rightarrow q) \rightarrow \neg q \\
\equiv & (p \wedge \neg q) \rightarrow \neg q \\
\equiv & (p \rightarrow \neg q) \vee(\neg q \rightarrow \neg q) \\
\equiv & (p \rightarrow \neg q) \vee T \\
\equiv & T
\end{aligned}
$$

	$p \rightarrow q \equiv \neg p \vee q$
(b)	$p \rightarrow q \equiv \neg q \rightarrow \neg p$
(c)	$\mathbf{T} \rightarrow p \equiv p$
(d)	$p \rightarrow \mathbf{F} \equiv \neg p$
(e)	$p \rightarrow p \equiv \mathbf{T}$
(f)	$p \rightarrow q \equiv(p \wedge \neg q) \rightarrow \mathbf{F}$
(g)	$\neg p \rightarrow q \equiv p \vee q$
(h)	$\neg(p \rightarrow q) \equiv p \wedge \neg q$
(i)	$\neg(p \rightarrow \neg q) \equiv p \wedge q$
(j)	$(p \rightarrow q) \vee(q \rightarrow p) \equiv \mathbf{T}$
(k)	$(p \wedge q) \rightarrow r \equiv p \rightarrow(q \rightarrow r)$
(l)	$(p \wedge q) \rightarrow r \equiv(p \rightarrow r) \vee(q \rightarrow r)$

