Matrices

Section 2.6

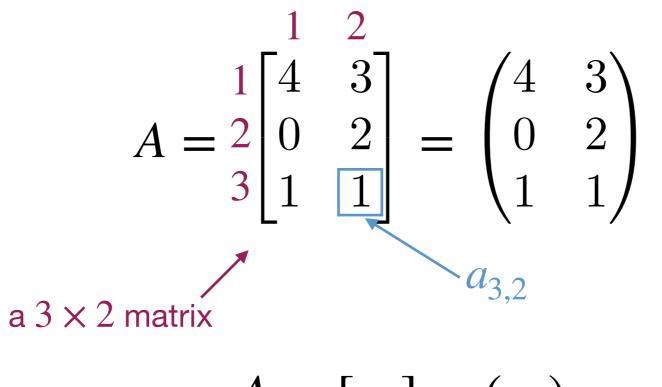
Why are We Studying Matrices?

- Matrices have plenty of uses in CS
- Representation ...
 - ... of the graph data structure
 - ... of functions and relations (next two topics we'll cover)
- Affine transformations in Computer Graphics
 - Example to come!

Definition: <u>Matrix</u>

A matrix is an *n*-dimensional collection of values

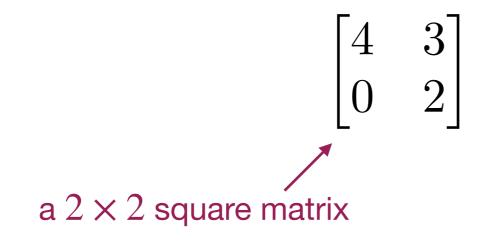
Notation



$$A = [a_{ij}] = (a_{ij})$$

Definition: <u>Square Matrices</u>

Matrices in which the number of rows equals the number of columns



Definition: <u>Square Matrices</u>

Matrices in which the number of rows equals the number of columns

Definition: <u>Matrix Equality</u>

Matrices A and B are equal if they share the same dimensions and each pair of corresponding elements is equal, i.e. $a_{ij} = b_{ij}$ for $1 \le i \le n, 1 \le j \le m$

Definition: <u>*Transposition*</u>

The transposition of an $m \times n$ matrix A is an $n \times m$ matrix A^T in which the rows and columns are exchanged. $a_{ij} = a_{ji}^T$

$$A = \begin{bmatrix} 4 & 3 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \qquad A^T = \begin{bmatrix} 4 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

Definition: <u>*Transposition*</u>

The transposition of an $m \times n$ matrix A is an $n \times m$ matrix A^T in which the rows and columns are exchanged. $a_{ij} = a_{ji}^T$

Definition: <u>Matrix Symmetry</u>

Matrix A is symmetric if $A = A^T$ (note: A is square).

$$\begin{bmatrix} 4 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

1. Matrix Addition

Definition: <u>Matrix Addition</u> (a.ka. Matrix Sum)

The sum of two $n \times m$ matrices A and B is the $n \times m$ matrix C such that $c_{ij} = a_{ij} + b_{ij}$

$$A = \begin{bmatrix} 6 & 0 \\ 4 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 3 \\ 1 & 0 \end{bmatrix}$$
$$A + B = \begin{bmatrix} 6+-1 & 0+3 \\ 4+1 & 2+0 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 5 & 2 \end{bmatrix}$$

Note: A + B = B + A(matrix addition is commutative).

2. Scalar Product

Definition: <u>Scalar</u>

A scalar is a real number (in this context)

Definition: <u>Scalar Product</u>

The product of a scalar *d* and an $n \times m$ matrix *A* is the $n \times m$ matrix *B* such that $b_{ij} = d \cdot a_{ij}$

$$A = \begin{bmatrix} 6 & 0 \\ 4 & 2 \end{bmatrix} \quad \frac{1}{2}A = \begin{bmatrix} \frac{1}{2} \cdot 6 & \frac{1}{2} \cdot 0 \\ \frac{1}{2} \cdot 4 & \frac{1}{2} \cdot 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$$

3. Matrix Product

Definition: Matrix Product (a.ka. Matrix Multiplication)

The product of an $m \times n$ matrix A and an $n \times k$ matrix B, is an $m \times k$ matrix $C = A \cdot B$ in which $c_{ij} = \sum_{k=1}^{n} (a_{ik} \cdot b_{kj}).$

- Matrix multiplication is associative and distributive

Let $C = A \cdot B$ Element c_{ij} is calculated by:

Γ1

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{ik} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{kj} \end{bmatrix} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{ik} \cdot b_{kj}$$

Recall:
$$c_{ij} = \sum_{k=1}^{n} (a_{ik} \cdot b_{kj})$$

 $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} \qquad AB = \begin{bmatrix} 7 & 1 \\ 9 & 2 \end{bmatrix}$

Because *A* has 2 columns and *B* has 2 rows, *AB* can be computed Boxes example: Row [1 3] and column [4 1]: $1 \cdot 4 + 3 \cdot 1 = 7$

$$BA = \begin{bmatrix} 6 & 13 \\ 1 & 3 \end{bmatrix}$$
 Matrix product is **not**
generally commutative

$$A = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 \end{bmatrix} \qquad A \cdot B = \begin{bmatrix} \Box & \Box \\ \Box & \Box \\ \Box & \Box \end{bmatrix}$$
$$3 \times 1 \qquad 1 \times 3$$

$$B \rightarrow \begin{bmatrix} 2 & 1 \end{bmatrix}$$
$$A \rightarrow \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -2 & -1 \\ 6 & 3 \end{bmatrix} = A \cdot B$$

$$A = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
$$1 \times 3 \qquad 3 \times 1$$

$A \cdot B = [0 \cdot 2 + -1 \cdot 1 + 3 \cdot 3] = [8]$

Identity Matrix

- Remember the concept of Multiplicative Identity?
 - $1 \cdot x = x$

Definition: <u>Identity Matrix</u>

The Identity Matrix is an $n \times n$ matrix (I_n) populated with 1's down the main (upper left to lower right) diagonal and with 0's elsewhere.

If
$$A$$
 is $m \times n : A \cdot I_n = I_m \cdot A = A$
 $m \times n \quad n \times n \quad m \times m \quad m \times n \quad m \times n$

Matrix Power

Definition: <u>*n*th Matrix Power</u>

The n^{th} power of a $m \times m$ matrix A, denoted A^n , is the result of n - 1 successive matrix products of A

$$A^{4} = ((A \cdot A) \cdot A) \cdot A = A \cdot (A \cdot (A \cdot A))$$
$$A^{0} = ? \quad \text{[Answer: } A^{0} = I_{m}\text{, because } A \text{ is } m \times m\text{]}$$

Example: Affine Transformations

- Used to 'move' objects in computer graphics
- Background:

Translation: $(x, y) \Rightarrow (x', y')$ $x' = x + t_x$ $y' = y + t_y$ (x', y') $y' = y + t_y$ $y' = s_x \cdot x$ $y' = s_x \cdot x$ $y' = s_y \cdot y$

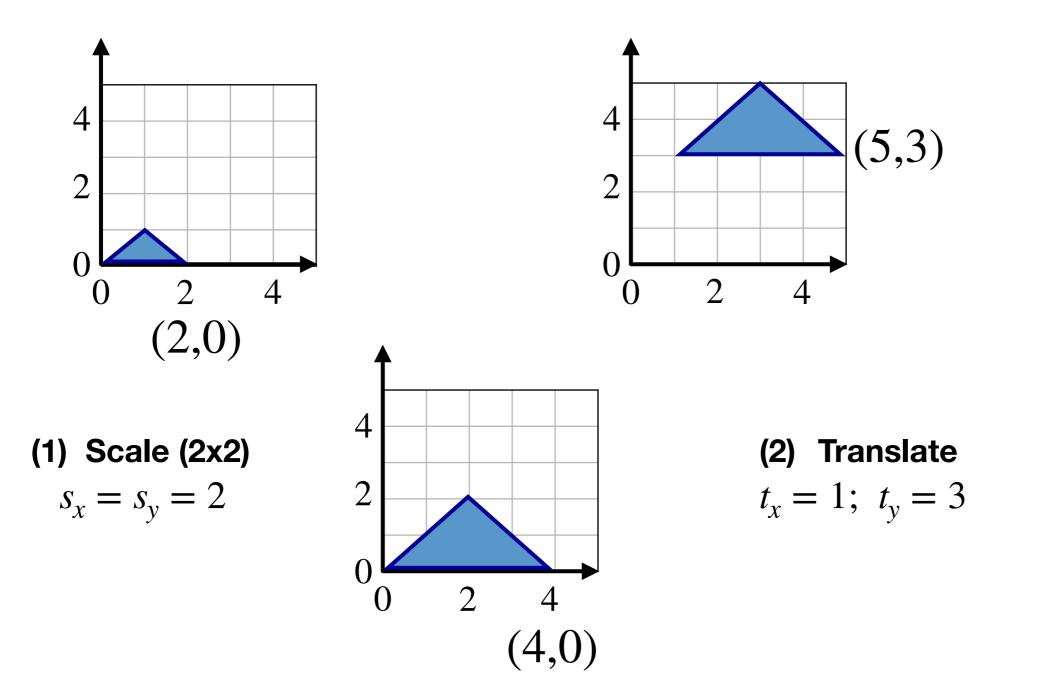
2

0

3

Δ

Example: Affine Transformations



Example: Affine Transformations

(Combined transformation matrix *—*)

$$(2,0) \Rightarrow (5,3): \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix}$$

Zero-One Matrices

- All entries are 0 or 1, used to represent discrete structures
- Three Operations:
 - 1. 'Join': $(A \lor B)$ inclusive OR of pairs of values
 - 2. 'Meet': $(A \land B)$ AND of corresponding pairs

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$M \lor N = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad M \land N = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Zero-One Matrices

3. 'Boolean Product': Consider $A(m \times n)$ and $B(n \times l)$. $C = A \odot B$ is $m \times l$ where $c_{ij} = \bigvee_{n}^{n} (a_{ik} \wedge b_{kj})_{k=1}$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad G = E \odot F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$g_{33} = \bigvee (e_{3k} \wedge f_{k3}) = (1 \wedge 0) \vee (1 \wedge 1)$$
$$= 0 \vee 1 = 1$$

Zero-One Matrices

Definition: <u>*r*th Boolean Power</u>

The r^{th} Boolean Power of an $n \times n$ matrix $A, A^{[r]}$, is the $n \times n$ resulting form of r - 1 successive boolean products.

Note: $A^{[0]} = I_n$