Proof Examples

Example 1

Conjecture: Every odd integer is the difference of two squares.

Proof (Direct): Let n be an odd integer. $\exists_{k \in \mathbb{Z}}$ s.t. $n=2 k+1$ To gain some insight:
$3=2(1)+1=2^{2}-1^{2}, 5=2(4)+1=3^{2}-2^{2}$,
$7=2(3)+1=4^{2}-3^{2}, 27=2(13)+1=14^{2}-13^{2}$
Observation 1: odd numbers seem to be the difference of two consecutive squares.

Observation 2: For an odd number, $n=2 k+1$, it seems to be the sum of the squares $(k+1)^{2}-k^{2}$.

Example 1

Conjecture: Every odd integer is the difference of two squares.

Proof (Direct): Let n be an odd integer. $\exists_{k \in \mathbb{Z}}$ s.t. $n=2 k+1$
To gain some insight:
$3=2(1)+1=2^{2}-1^{2}, 5=2(4)+1=3^{2}-2^{2}$,
WARNING: We have not proved this yet!
$7=2(3)+1=4^{2}-3^{2}, 27=2(13)+1=14^{2}-13^{2}$
Observation 1: odd numbers seem to be the difference of two consecutive squares.

Observation 2: For an odd number, $n=2 k+1$, it seems to be the sum of the squares $(k+1)^{2}-k^{2}$.

Example 1

Conjecture: Every odd integer is the difference of two squares.

Proof (Direct): Let n be an odd integer.
$\exists_{k \in \mathbb{Z}}$ s.t. $n=2 k+1$
Observe: $(k+1)^{2}-k^{2}=k^{2}+2 k+1-k^{2}=2 k+1$
So, when we have $n=2 k+1$, we will add and subtract k^{2} to the right side: $n=2 k+1+k^{2}-k^{2}$

Which can be factored to: $n=(k+1)^{2}-k^{2}$.
Therefore, every odd integer is the difference of two squares.

Example 2(a)

Conjecture: If x is irrational, then $\frac{1}{x}$ is irrational.
x
Proof (Contrapositive): Assume $\frac{1}{x}$ is rational.
By definition, $\exists_{p, q \in \mathbb{Z}}$ s.t. $\frac{1}{x}=\frac{p}{q}$. $p \neq 0$ because $\frac{1}{x} \neq 0$
Solving for x, we get $x=\frac{q}{p}$. Since p and q are both integers, x is rational.

Thus we have shown that the contrapositive is true.
Therefore, if x is irrational, then $\frac{1}{x}$ is irrational.

Example 2(b)

Conjecture: If x is irrational, then $\frac{1}{x}$ is irrational.
x
Proof (Contradiction): Assume x is irrational but $\frac{1}{x}$ is rational.
By definition, $\exists_{p, q \in \mathbb{Z}}$ s.t. $\frac{1}{x}=\frac{p}{q} . p \neq 0$ because $\frac{1}{x} \neq 0$
Solving for x we get $x=\frac{p}{q}$. We know p and q are integers so this makes x rational, which is a contradiction.

Therefore, If x is irrational, then $\frac{1}{x}$ is irrational.

Example 3

Conjecture: Pick a list of 22 days in a year. At least four of those days fall on the same day of the week.

Proof (Contradiction): Assume not. Assume that in our list of 22 days that no day of the week occurs more than 3 times.

Let d_{i} be the number of times $i^{\text {th }}$ day of the week occurs, where $1 \leq i \leq 7$.

If $d_{i} \leq 3$, then $\sum_{i=1}^{7} d_{i} \leq \sum_{i=1}^{7} 3 \leq 7 * 3=21$. This is a
contradiction because we assumed our list had 22 days on it.
Therefore, if we pick a list of 22 days in a year, then at least four of those days fall on the same day of the week.

Example 4

Conjecture: If $x, y \in \mathbb{R}$, then $|x|+|y| \geq|x+y|$
Proof (By Cases): Assume x and y are real numbers.
We know that if $x \geq 0,|x|=x$ and if
$x<0,|x|=-x$
Case 1: $x \geq 0, y \geq 0$.
$|x|+|y|=x+y$.
$|x+y|=x+y$
Thus $|x|+|y| \geq|x+y|$

Example 4

Conjecture: If $x, y \in \mathbb{R}$, then $|x|+|y| \geq|x+y|$
Proof (By Cases): Assume x and y are real numbers.
We know that if $x \geq 0,|x|=x$ and if $x<0,|x|=-x$
Case 2: $x \geq 0, y<0, x+y \geq 0$.
$|x|+|y|=x+(-y)=x-y$.
$-y \geq y$, so $x+-y \geq x+y$.
Since $x+y \geq 0,|x+y|=x+y$.
Thus $|x|+|y|=x+-y \geq x+y=|x+y|$

Example 5

Conjecture: If $x, y \in \mathbb{R}$, then $|x|+|y| \geq|x+y|$
Proof (By Cases): Assume x and y are real numbers.
We know that if $x \geq 0,|x|=x$ and if $x<0,|x|=-x$
Case 3: $x \geq 0, y<0, x+y<0$.
$|x|+|y|=x+(-y)=x-y$.
Since $x+y<0,|x+y|=-(x+y)=-x-y$.
$x \geq-x$ so $x-y \geq-x-y$
Thus $|x|+|y|=x-y \geq-x-y=|x+y|$

Example 5

Conjecture: If $x, y \in \mathbb{R}$, then $|x|+|y| \geq|x+y|$
Proof (By Cases): Assume x and y are real numbers.
Case 4 \& 5: Same as case $2 \& 3$ with x and y flipped
Case 6: $x<0, y<0$.
$|x|+|y|=-x-y$.
$|x+y|=-(x+y)=-x-y$.
Thus, $|x|+|y| \geq|x+y|$
Therefore, $|x|+|y| \geq|x+y|$ in all cases.

Example 6

Conjecture: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) $x / 2$ is rational, and (iii) $3 x-1$ is rational.

Proof: To show that these three are equivalent, it is sufficient to show (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i).

Why is that sufficient?

1. (i) \rightarrow (iii) \equiv (i) \rightarrow (ii) \wedge (ii) \rightarrow (iii)
2. (ii) \rightarrow (i) \equiv (ii) \rightarrow (iii) $\wedge($ (iii $) \rightarrow$ (i)
3. (iii) \rightarrow (ii) \equiv (iii) \rightarrow (i) \wedge (i) \rightarrow (ii)

Example 6

Conjecture: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) $x / 2$ is rational, and (iii) $3 x-1$ is rational.

Proof: (i) \rightarrow (ii) (direct): Assume x is rational.

By definition, $\exists_{p, q \in \mathbb{Z}}$ s.t. $x=\frac{p}{q}$.
$x / 2=\frac{\frac{p}{q}}{2}=\frac{p}{2 q} .2 q$ is an integer, therefore $\mathrm{x} / 2$ is rational.

Therefore, (i) \rightarrow (ii).

Example 6

Conjecture: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) $x / 2$ is rational, and (iii) $3 x-1$ is rational.

Proof: (ii) \rightarrow (iii) (direct): Assume $x / 2$ is rational.
By definition, $\exists_{p, q \in \mathbb{Z}}$ s.t. $x / 2=\frac{p}{q}$.
$x=\frac{2 p}{q}, 3 x-1=3\left(\frac{2 p}{q}\right)-1=\frac{6 p}{q}-1=\frac{6 p}{q}-\frac{q}{q}=\frac{6 p-q}{q}$
$6 p-q \in \mathbb{Z}$, so $3 x-1$ is rational.
Therefore, (ii) \rightarrow (iii).
(continued)

Example 6

Conjecture: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) $x / 2$ is rational, and (iii) $3 x-1$ is rational.

Proof: (iii) \rightarrow (i) (direct): Assume $3 x-1$ is rational.
By definition, $\exists_{p, q \in \mathbb{Z}}$ s.t. $3 x-1=\frac{p}{q}$.
$3 x=\frac{p}{q}+1=\frac{p+q}{q} . x=\frac{\frac{p+q}{q}}{3}=\frac{p+q}{3 q}$.
$p+q \in \mathbb{Z}, 3 q \in \mathbb{Z}$ so x is rational.
Therefore, (iii) \rightarrow (i).
Thus, the statements x is rational, $x / 2$ is rational, and $3 x-1$ is rational are equivalent.

