Proof Examples

Conjecture: Every odd integer is the difference of two squares.

<u>Proof (Direct)</u>: Let *n* be an odd integer. $\exists_{k \in \mathbb{Z}}$ s.t. n = 2k + 1To gain some insight: $3 = 2(1) + 1 = 2^2 - 1^2$, $5 = 2(4) + 1 = 3^2 - 2^2$, $7 = 2(3) + 1 = 4^2 - 3^2$, $27 = 2(13) + 1 = 14^2 - 13^2$ Observation 1: odd numbers seem to be the difference of two consecutive squares. <u>Observation 2</u>: For an odd number, n = 2k + 1, it seems to be the sum of the squares $(k+1)^2 - k^2$.

Conjecture: Every odd integer is the difference of two squares.

Proof (Direct): Let *n* be an odd integer. $\exists_{k \in \mathbb{Z}}$ s.t. n = 2k + 1To gain some insight: $3 = 2(1) + 1 = 2^2 - 1^2$, $5 = 2(4) + 1 = 3^2 - 2^2$, **WARNING: We have not proved this yet!** $7 = 2(3) + 1 = 4^2 - 3^2$, $27 = 2(13) + 1 = 14^2 - 13^2$ Observation 1: odd numbers seem to be the difference of two

consecutive squares.

<u>Observation 2</u>: For an odd number, n = 2k + 1, it seems to be the sum of the squares $(k + 1)^2 - k^2$.

Conjecture: Every odd integer is the difference of two squares.

Proof (Direct): Let *n* be an odd integer. $\exists_{k \in \mathbb{Z}}$ s.t. n = 2k + 1Observe: $(k + 1)^2 - k^2 = k^2 + 2k + 1 - k^2 = 2k + 1$ So, when we have n = 2k + 1, we will add and subtract k^2 to the right side: $n = 2k + 1 + k^2 - k^2$ Which can be factored to: $n = (k + 1)^2 - k^2$. Therefore, every odd integer is the difference of two squares.

Example 2(a)

<u>**Conjecture**</u>: If x is irrational, then $\frac{1}{x}$ is irrational.

<u>Proof (Contrapositive)</u>: Assume $\frac{1}{x}$ is rational.

By definition,
$$\exists_{p,q\in\mathbb{Z}}$$
 s.t. $\frac{1}{x} = \frac{p}{q}$. $p \neq 0$ because $\frac{1}{x} \neq 0$

Solving for *x*, we get $x = \frac{q}{p}$. Since *p* and *q* are both integers, *x* is rational.

Thus we have shown that the contrapositive is true.

Therefore, if x is irrational, then
$$\frac{1}{x}$$
 is irrational.

Example 2(b) <u>Conjecture</u>: If x is irrational, then — is irrational. \boldsymbol{X} **Proof (Contradiction):** Assume x is irrational but — is X rational. By definition, $\exists_{p,q\in\mathbb{Z}}$ s.t. $\frac{1}{x} = \frac{p}{q}$. $p \neq 0$ because $\frac{1}{x} \neq 0$ Solving for x we get $x = \frac{p}{-}$. We know p and q are integers so this makes x rational, which is a contradiction. Therefore, If x is irrational, then — is irrational. X

Conjecture: Pick a list of 22 days in a year. At least four of those days fall on the same day of the week.

Proof (Contradiction): Assume not. Assume that in our list of 22 days that no day of the week occurs more than 3 times.

Let d_i be the number of times i^{th} day of the week occurs, where $1 \le i \le 7$.

If
$$d_i \le 3$$
, then $\sum_{i=1}^7 d_i \le \sum_{i=1}^7 3 \le 7 * 3 = 21$. This is a

contradiction because we assumed our list had 22 days on it.

Therefore, if we pick a list of 22 days in a year, then at least four of those days fall on the same day of the week.

Conjecture: If
$$x, y \in \mathbb{R}$$
, then $|x| + |y| \ge |x + y|$

Proof (By Cases): Assume *x* and *y* are real numbers.

```
We know that if x \ge 0, |x| = x and if
```

```
x < 0, |x| = -x
```

```
<u>Case 1:</u> x \ge 0, y \ge 0.
```

$$|x| + |y| = x + y.$$

$$|x+y| = x+y$$

Thus $|x| + |y| \ge |x + y|$

Conjecture: If
$$x, y \in \mathbb{R}$$
, then $|x| + |y| \ge |x + y|$

Proof (By Cases): Assume *x* and *y* are real numbers.

We know that if
$$x \ge 0$$
, $|x| = x$ and if $x < 0$, $|x| = -x$
Case 2: $x \ge 0$, $y < 0$, $x + y \ge 0$.

$$|x| + |y| = x + (-y) = x - y.$$

$$-y \ge y$$
, so $x + -y \ge x + y$.

Since $x + y \ge 0$, |x + y| = x + y.

Thus $|x| + |y| = x + -y \ge x + y = |x + y|$

Conjecture: If
$$x, y \in \mathbb{R}$$
, then $|x| + |y| \ge |x + y|$

Proof (By Cases): Assume *x* and *y* are real numbers.

We know that if
$$x \ge 0$$
, $|x| = x$ and if $x < 0$, $|x| = -x$

Case 3:
$$x \ge 0$$
, $y < 0$, $x + y < 0$.
 $|x| + |y| = x + (-y) = x - y$.

Since
$$x + y < 0$$
, $|x + y| = -(x + y) = -x - y$.

$$x \ge -x \text{ so } x - y \ge -x - y$$

Thus $|x| + |y| = x - y \ge -x - y = |x + y|$

Conjecture: If
$$x, y \in \mathbb{R}$$
, then $|x| + |y| \ge |x + y|$

Proof (By Cases): Assume x and y are real numbers. Case 4 & 5: Same as case 2 & 3 with x and y flipped Case 6: *x* < 0, *y* < 0. |x| + |y| = -x - y.|x + y| = -(x + y) = -x - y.Thus, $|x| + |y| \ge |x + y|$ Therefore, $|x| + |y| \ge |x + y|$ in all cases.

<u>Conjecture</u>: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) x/2 is rational, and (iii) 3x - 1 is rational.

<u>Proof</u>: To show that these three are equivalent, it is sufficient to show (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i).

Why is that sufficient?

1. (i)
$$\rightarrow$$
(iii) \equiv (i) \rightarrow (ii) \wedge (ii) \rightarrow (iii)

2. (ii)
$$\rightarrow$$
 (i) \equiv (ii) \rightarrow (iii) \wedge (iii) \rightarrow (i)

3. (iii)
$$\rightarrow$$
 (ii) \equiv (iii) \rightarrow (i) \wedge (i) \rightarrow (ii)

<u>Conjecture</u>: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) x/2 is rational, and (iii) 3x - 1 is rational.

Proof: (i) \rightarrow (ii) (direct): Assume *x* is rational.

By definition,
$$\exists_{p,q\in\mathbb{Z}}$$
 s.t. $x = \frac{p}{q}$

$$x/2 = \frac{\frac{p}{q}}{2} = \frac{p}{2q}$$
. 2q is an integer, therefore x/2 is

rational.

Therefore, (i) \rightarrow (ii).

(continued)

<u>Conjecture</u>: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) x/2 is rational, and (iii) 3x - 1 is rational.

Proof: (ii) \rightarrow (iii) (direct): Assume x/2 is rational.

By definition,
$$\exists_{p,q\in\mathbb{Z}}$$
 s.t. $x/2 = \frac{p}{q}$.
 $x = \frac{2p}{q}, \ 3x - 1 = 3(\frac{2p}{q}) - 1 = \frac{6p}{q} - 1 = \frac{6p}{q} - \frac{q}{q} = \frac{6p - q}{q}$
 $6p - q \in \mathbb{Z}, \text{ so } 3x - 1 \text{ is rational.}$
Therefore, (ii) \rightarrow (iii). (continued)

<u>Conjecture</u>: The following three statements about $x \in \mathbb{R}$ are equivalent: (i) x is rational, (ii) x/2 is rational, and (iii) 3x - 1 is rational.

Proof: (iii) \rightarrow (i) (direct): Assume 3x - 1 is rational.

By definition,
$$\exists_{p,q\in\mathbb{Z}}$$
 s.t. $3x - 1 = \frac{p}{q}$.
 $3x = \frac{p}{q} + 1 = \frac{p+q}{q}$. $x = \frac{\frac{p+q}{q}}{3} = \frac{p+q}{3q}$

 $p + q \in \mathbb{Z}, 3q \in \mathbb{Z}$ so x is rational.

Therefore, (iii) \rightarrow (i).

Thus, the statements x is rational, x/2 is rational, and 3x - 1 is rational are equivalent.