
Proof Examples



Example 1

Proof (Direct):  Let  be an odd integer.  


To gain some insight: 


,  ,


,  


Observation 1: odd numbers seem to be the difference of two 
consecutive squares.  


Observation 2: For an odd number, , it seems to be 
the sum of the squares .

n ∃k∈ℤ s.t. n = 2k + 1

3 = 2(1) + 1 = 22 − 12 5 = 2(4) + 1 = 32 − 22

7 = 2(3) + 1 = 42 − 32 27 = 2(13) + 1 = 142 − 132

n = 2k + 1
(k + 1)2 − k2

Conjecture: Every odd integer is the difference of two 
squares. 



Example 1

Proof (Direct):  Let  be an odd integer.  


To gain some insight: 


,  ,


,  


Observation 1: odd numbers seem to be the difference of two 
consecutive squares.  


Observation 2: For an odd number, , it seems to be 
the sum of the squares .

n ∃k∈ℤ s.t. n = 2k + 1

3 = 2(1) + 1 = 22 − 12 5 = 2(4) + 1 = 32 − 22

7 = 2(3) + 1 = 42 − 32 27 = 2(13) + 1 = 142 − 132

n = 2k + 1
(k + 1)2 − k2

Conjecture: Every odd integer is the difference of two 
squares. 

WARNING: We have not proved this yet!



Example 1

Proof (Direct):  Let  be an odd integer.



Observe: 


So, when we have , we will add and subtract  
to the right side: 


Which can be factored to: .


Therefore, every odd integer is the difference of two 
squares. 

n
∃k∈ℤ s.t. n = 2k + 1

(k + 1)2 − k2 = k2 + 2k + 1 − k2 = 2k + 1

n = 2k + 1 k2

n = 2k + 1 + k2 − k2

n = (k + 1)2 − k2

Conjecture: Every odd integer is the difference of two 
squares. 



Example 2(a)

Proof (Contrapositive): Assume  is rational. 


By definition,  s.t. .  because 


Solving for , we get .  Since  and  are both integers,  

is rational. 


Thus we have shown that the contrapositive is true. 


Therefore, if  is irrational, then  is irrational. 

1
x

∃p,q∈ℤ
1
x

=
p
q

p ≠ 0
1
x

≠ 0

x x =
q
p

p q x

x
1
x

Conjecture: If  is irrational, then  is irrational. x 1
x



Example 2(b)

Proof (Contradiction): Assume  is irrational but  is 

rational.  


By definition, .  because 

Solving for  we get . We know  and  are integers 

so this makes  rational, which is a contradiction.


Therefore, If  is irrational, then  is irrational. 
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Conjecture: If  is irrational, then  is irrational. x
1
x



Example 3

Proof (Contradiction):  Assume not. Assume that in our list 
of 22 days that no day of the week occurs more than 3 times. 


Let  be the number of times  day of the week occurs, 
where 


If , then . This is a 

contradiction because we assumed our list had 22 days on it.


Therefore, if we pick a list of 22 days in a year, then at least 
four of those days fall on the same day of the week. 

di ith

1 ≤ i ≤ 7.

di ≤ 3
7

∑
i=1

di ≤
7

∑
i=1

3 ≤ 7 * 3 = 21

Conjecture: Pick a list of 22 days in a year. At least four of 
those days fall on the same day of the week. 



Example 4

Proof (By Cases): Assume  and  are real numbers. 


We know that if  and if 



Case 1: . 


.  


  


Thus 

x y

x ≥ 0, |x | = x
x < 0, |x | = − x

x ≥ 0, y ≥ 0

|x | + |y | = x + y

|x + y | = x + y

|x | + |y | ≥ |x + y |

Conjecture: If , then x, y ∈ ℝ |x | + |y | ≥ |x + y |



Example 4

Proof (By Cases): Assume  and  are real numbers. 


We know that if  and if 


Case 2: . 


.  


, so . 


Since , .  


Thus 

x y

x ≥ 0, |x | = x x < 0, |x | = − x

x ≥ 0, y < 0, x + y ≥ 0

|x | + |y | = x + (−y) = x − y

−y ≥ y x + −y ≥ x + y

x + y ≥ 0 |x + y | = x + y

|x | + |y | = x + −y ≥ x + y = |x + y |

Conjecture: If , then x, y ∈ ℝ |x | + |y | ≥ |x + y |



Example 5

Proof (By Cases): Assume  and  are real numbers.


We know that if  and if 


Case 3: . 
.  


Since , .   


 so 


Thus 

x y

x ≥ 0, |x | = x x < 0, |x | = − x

x ≥ 0, y < 0, x + y < 0
|x | + |y | = x + (−y) = x − y

x + y < 0 |x + y | = − (x + y) = − x − y

x ≥ − x x − y ≥ − x − y

|x | + |y | = x − y ≥ − x − y = |x + y |

Conjecture: If , then x, y ∈ ℝ |x | + |y | ≥ |x + y |



Example 5

Proof (By Cases): Assume  and  are real numbers. 


Case 4 & 5: Same as case 2 & 3 with  and  flipped


Case 6: . 


.  


. 


Thus, 


Therefore,  in all cases. 

x y

x y

x < 0, y < 0

|x | + |y | = − x − y

|x + y | = − (x + y) = − x − y

|x | + |y | ≥ |x + y |

|x | + |y | ≥ |x + y |

Conjecture: If , then x, y ∈ ℝ |x | + |y | ≥ |x + y |



Example 6

Proof: To show that these three are equivalent, it is 
sufficient to show (i) (ii), (ii) (iii), and (iii) (i).


Why is that sufficient?


1. (i) (iii)  (i) (ii)  (ii) (iii)


2. (ii) (i)   (ii) (iii)  (iii) (i)


3. (iii) (ii)  (iii) (i)  (i) (ii)

→ → →

→ ≡ → ∧ →

→ ≡ → ∧ →

→ ≡ → ∧ →

Conjecture: The following three statements about  are 
equivalent: (i)  is rational, (ii)  is rational, and (iii)  is rational. 

x ∈ ℝ
x x/2 3x − 1



Example 6

Proof: (i) (ii) (direct): Assume  is rational.  


By definition,  s.t. .


.   is an integer, therefore x/2 is 

rational.


Therefore, (i) (ii).                                           (continued)

→ x

∃p,q∈ℤ x =
p
q

x/2 =

p
q

2
=

p
2q

2q

→

Conjecture: The following three statements about  are 
equivalent: (i)  is rational, (ii)  is rational, and (iii)  is rational. 

x ∈ ℝ
x x/2 3x − 1



Example 6

Proof: (ii) (iii) (direct): Assume /2 is rational.  


By definition,  s.t. .  


,  


, so  is rational.


Therefore, (ii) (iii).                                                         (continued)

→ x

∃p,q∈ℤ x/2 =
p
q

x =
2p
q

3x − 1 = 3(
2p
q

) − 1 =
6p
q

− 1 =
6p
q

−
q
q

=
6p − q

q

6p − q ∈ ℤ 3x − 1

→

Conjecture: The following three statements about  are 
equivalent: (i)  is rational, (ii)  is rational, and (iii)  is rational. 

x ∈ ℝ
x x/2 3x − 1



Example 6

Proof: (iii) (i) (direct): Assume  is rational.  


By definition,  s.t. .  


.  .  


,  so  is rational.


Therefore, (iii) (i).   


Thus, the statements  is rational,  is rational, and  is 
rational are equivalent. 

→ 3x − 1

∃p,q∈ℤ 3x − 1 =
p
q

3x =
p
q

+ 1 =
p + q

q
x =

p + q
q

3
=

p + q
3q

p + q ∈ ℤ 3q ∈ ℤ x

→

x x/2 3x − 1

Conjecture: The following three statements about  are 
equivalent: (i)  is rational, (ii)  is rational, and (iii)  is rational. 

x ∈ ℝ
x x/2 3x − 1


