
Recurrence Relations



Recurrence Relations & Recursion

Computer Science has recursion

Mathematics has recurrence relations.

Example:


 where  defines the 
sequence 


The Fibonacci sequence is defined by the recurrence 


    


Where  and 

sn = sn−1 − 3, s1 = 13, ∀n ∈ ℤ 1 ≤ n ≤ 5
13,10,7,4,1

fn = fn−1 + fn−2

f0 = 0 f1 = 1



Recurrence Relations
Definition: Recurrence Relation


A recurrence relation for the sequence  is 
an equation that expresses  in terms of one or 
more of its preceding sequence members, one or 
more of which are initial conditions for the sequence

a0, a1, …
ak

Example:

The number of subsets of a set of  elements:


                              is the initial condition


             is the recurrence relation

Recall: This is the cardinality of a power set.

n
s(0) = 1
s(n) = 2 ⋅ s(n − 1)



Solving Recurrence Relations

Given a recurrence relation, can an equivalent closed-
form (non-recurrence) expression (a.ka. an explicit 
formula) be produced?


If so, the closed-form expression is the solution to the 
recurrence relation


Utility: Solving recurrence relations is a common task is 
algorithm analysis



Linear Homogeneous 
Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation With 
Constant Coefficients (LHRRWCC) of Degree k

A LHRRWCC of degree  has the form:

 

where  and 

k
R(n) = c1R(n − 1) + c2R(n − 2) + ⋯ + ckR(n − k)

ci ∈ ℝ ck ≠ 0

Example:

 is a LHRRWCC of degree 1


 is a LHRRWCC of degree 2


 is alos a LHRRWCC of degree 2

S(n) = 2 ⋅ S(n − 1)
fn = fn−1 + fn−2

A(x) = A(x − 2)



Solving LHRRWCCs of Degree 2

Assumption:  where  is a non-zero constant. 
(Why? We’ll get a nice quadratic expression at the end!)


If , then , etc.


Thus: 


becomes: 


As our degree is 2, we need only terms  and :



Divide through by 


Rearrange:                    

R(n) = wn w

R(n) = wn R(n − 1) = wn−1

R(n) = c1R(n − 1) + c2R(n − 2) + ⋯ + ckR(n − k)

wn = c1wn−1 + c2wn−2 + ⋯ + ckwn−k

k = 1 k = 2
wn = c1wn−1 + c2wn−2

wn−2 ⇒ w2 = c1w1 + c2

⇒ w2 − c1w1 − c2 = 0



Solving LHRRWCCs of Degree 2

Theorem: Assume a characteristic equation 
 with  and roots  and 

 such that .  The sequence  is a 
solution to  iff 

 where  and .  

Proof: Rosen Sect. 8.2 p 542-3

w2 − c1w − c2 = 0 c1, c2 ∈ ℝ r1
r2 r1 ≠ r2 {R(n)}

R(n) = c1R(n − 1) + c2R(n − 2)
R(n) = α1rn

1 + α2rn
2 n ∈ ℤ* αa, α2 ∈ ℝ



Solution Procedure: LHRRWCCs 
of Degree 2

1. Identify  &  and create the characteristic equation 



2. Insert the roots of the characteristic equation (  & ) 
into the closed-form expression 


3. Using the initial conditions, create two equations in two 
unknowns (  and )


4. Solve for  and  to complete the solution

c1 c2
w2 − c1w − c2 = 0

r1 r2
R(n) = α1rn

1 + α2rn
2

α1 α2

α1 α2



Example: Solving a LHRRWCC 
of Degree 2

(1) From the recurrence, we see that  and                          
 Characteristic eq. Is 


(2) Factor: .                                                          
It follows that the roots are:  and .                                  
And so: 


(3) Apply the initial conditions to : 
        


(4) Solve for the two unknowns:  and .                        


Thus the solution is 

c1 = 3 c2 = − 2
∴ w2 − 3w − (−2) = w2 − 3w + 2 = 0

w2 − 3w + 2 = (w − 2)(w − 1)
r1 = 2 r2 = 1

R(n) = α12n + α21n = α12n + α2

R(n) = α1rn
1 + α2rn

2
R(0) = α1 + α2 = 200 R(1) = 2α1 + α2 = 220

α1 = 20 α2 = 180

R(n) = 20 ⋅ 2n + 180 ⋅ 1n = 20 ⋅ 2n + 180

Solve: 


         where  and  

R(n) = 3R(n − 1) − 2R(n − 2)
R(0) = 200 R(1) = 220



“Divide & Conquer” Recurrence Relations

• Background:


• “Divide and Conquer” is a military, political, and algorithmic tactic:


• Military: Disconnect one half of a battle group from the other, and 
the two halves are much easer to defeat


• Political: Force the liberal and conservative wings of a political 
party to squabble, and the other party finds its work to be more 
easily accomplished


• Algorithmic: Solving two halves of a problem (and combining the 
results to construct the original problem’s answer) is often more 
efficient than solving the original problem directly



“Divide & Conquer” Recurrence Relations

Example:

(1) Binary Search 

    
   


(2) Best Case of Quicksort 
 

          +           +     

 
[Worst case of Quicksort: ]  

S(1) = 1
S(n) = S(

n
2

) + k

Q(1) = 1
Q(n) = Q(

n
2

) Q(
n
2

) n

Q(n) = Q(n − 1) + n



Solving “Divide & Conquer” Rec. Relations

Example:

 


          


           


          


        


(continues…)

S(1) = 1

S(n) = S(
n
2

) + k

S(
n
2

) = S(
n
4

) + k ⇒ S(n) = S(
n
4

) + 2k

S(
n
4

) = S(
n
8

) + k ⇒ S(n) = S(
n
8

) + 3k

S(
n
8

) = S(
n

16
) + k ⇒ S(n) = S(

n
16

) + 4k

“Find The Pattern” (a.k.a. Iterative (or Backward) Substitutions)



Solving “Divide & Conquer” Rec. Relations

In general: , where 


[Simplifying assumption:  is a power of 2]


Let ; that is, 











 is 

But … do you believe?

S(n) = S(
n
2a

) + ak a ≥ 1, a ∈ ℤ

n
n = 2a a = log2 n

S(n) = S(
n
n

) + k log2 n

S(n) = S(1) + k log2 n
S(n) = 1 + k log2 n
∴ S(n) O(log2 n)



Solving “Divide & Conquer” Rec. Relations

Proof (weak induction):


Basis: .   


Inductive Step:  If  then 





         


         


         


         


         


Therefore, 

n = 1 S(1) = 1 = k ⋅ 0 + 1 = k ⋅ log2 1 + 1

S( j) = k ⋅ log2 j + 1 S(2j) = k ⋅ log2(2j) + 1

S(2j) = S(
2j
2

) + k

= S( j) + k

= k ⋅ log2 j + 1 + k

= k(log2 j + 1) + 1

= k(log2 j + log2 2) + 1

= k ⋅ log2(2j) + 1

S(n) = k ⋅ log2 n + 1

Conjecture: S(n) = k ⋅ log2 n + 1

Applying the Recurrence

Simplifying

By the Inductive Hypothesis

As we needed to show



Solving “Divide & Conquer” Rec. Relations

Example:  Worst Case of Quicksort

Recall:  and 


 


              





              




Apparently, in general:





(continues…)

Q(1) = 1, Q(n) = Q(n − 1) + n
Q(n) = Q(n − 1) + n

Q(n − 1) = Q(n − 2) + (n − 1)
Q(n) = Q(n − 2) + n + (n − 1)

Q(n − 2) = Q(n − 3) + (n − 2)
Q(n) = Q(n − 3) + n + (n − 1) + (n − 2)

Q(n) = Q(n − k) +
k−1

∑
i=0

(n − i), k ∈ ℤ+



Solving “Divide & Conquer” Rec. Relations

If we continue, we’ll reach  when 





        


                


        


And this shows why Quicksort is  in the worst case…

…  But do you believe?

Q(n − k) = Q(1) k = n − 1

Q(n) = Q(n − (n − 1)) +
(n−1)−1

∑
i=0

(n − i)

= Q(1) +
n

∑
i=2

i

= 1 +
n

∑
i=2

i

=
n(n + 1)

2
O(n2)

Substituting

Simplifying

Combine Terms

By Gauss



Solving “Divide & Conquer” Rec. Relations

Proof (weak induction):


Basis: .  . Ok! 


Inductive Step:  If , then .





               


               


Therefore, 

n = 1 Q(1) = 1 =
2
2

=
1(1 + 1)

2

Q(k) =
k(k + 1)

2
Q(k + 1) =

(k + 1)(k + 2)
2

Q(k + 1) = Q(k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
(k + 1)(k + 2)

2

Q(n) =
k(k + 1)

2

Conjecture: Q(n) =
n(n + 1)

2

Applying the recurrence

By the Inductive Hypothesis

After a bunch of algebra



Extra Slides



Approximate Solutions to Rec. Relations

Theorem: (The Master Theorem) Given a recursive function of the 
form , where:  

 is an increasing function, 
, 

 is an integer , 
 is a real  
 is an integer  
 is a real , and  
 is a real , then: 

 

T(n) = a ⋅ T(n/b) + c ⋅ n2

T(n)
n = bk

k > 0
a ≥ 1
b > 1
c > 0
d ≥ 0

f(n) =
O(nd) if a < bd

O(nd ⋅ log2 n) if a = < bd

O(nlogb a) if a > bd

Proof: Rosen


