
Recurrence Relations

Recurrence Relations & Recursion

Computer Science has recursion

Mathematics has recurrence relations.

Example:

 where defines the
sequence

The Fibonacci sequence is defined by the recurrence

Where and

sn = sn−1 − 3, s1 = 13, ∀n ∈ ℤ 1 ≤ n ≤ 5
13,10,7,4,1

fn = fn−1 + fn−2

f0 = 0 f1 = 1

Recurrence Relations
Definition: Recurrence Relation

A recurrence relation for the sequence is
an equation that expresses in terms of one or
more of its preceding sequence members, one or
more of which are initial conditions for the sequence

a0, a1, …
ak

Example:

The number of subsets of a set of elements:

 is the initial condition

 is the recurrence relation

Recall: This is the cardinality of a power set.

n
s(0) = 1
s(n) = 2 ⋅ s(n − 1)

Solving Recurrence Relations

Given a recurrence relation, can an equivalent closed-
form (non-recurrence) expression (a.ka. an explicit
formula) be produced?

If so, the closed-form expression is the solution to the
recurrence relation

Utility: Solving recurrence relations is a common task is
algorithm analysis

Linear Homogeneous
Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation With
Constant Coefficients (LHRRWCC) of Degree k

A LHRRWCC of degree has the form:

where and

k
R(n) = c1R(n − 1) + c2R(n − 2) + ⋯ + ckR(n − k)

ci ∈ ℝ ck ≠ 0

Example:

 is a LHRRWCC of degree 1

 is a LHRRWCC of degree 2

 is alos a LHRRWCC of degree 2

S(n) = 2 ⋅ S(n − 1)
fn = fn−1 + fn−2

A(x) = A(x − 2)

Solving LHRRWCCs of Degree 2

Assumption: where is a non-zero constant.
(Why? We’ll get a nice quadratic expression at the end!)

If , then , etc.

Thus:

becomes:

As our degree is 2, we need only terms and :

Divide through by

Rearrange:

R(n) = wn w

R(n) = wn R(n − 1) = wn−1

R(n) = c1R(n − 1) + c2R(n − 2) + ⋯ + ckR(n − k)

wn = c1wn−1 + c2wn−2 + ⋯ + ckwn−k

k = 1 k = 2
wn = c1wn−1 + c2wn−2

wn−2 ⇒ w2 = c1w1 + c2

⇒ w2 − c1w1 − c2 = 0

Solving LHRRWCCs of Degree 2

Theorem: Assume a characteristic equation
 with and roots and

 such that . The sequence is a
solution to iff

 where and .

Proof: Rosen Sect. 8.2 p 542-3

w2 − c1w − c2 = 0 c1, c2 ∈ ℝ r1
r2 r1 ≠ r2 {R(n)}

R(n) = c1R(n − 1) + c2R(n − 2)
R(n) = α1rn

1 + α2rn
2 n ∈ ℤ* αa, α2 ∈ ℝ

Solution Procedure: LHRRWCCs
of Degree 2

1. Identify & and create the characteristic equation

2. Insert the roots of the characteristic equation (&)
into the closed-form expression

3. Using the initial conditions, create two equations in two
unknowns (and)

4. Solve for and to complete the solution

c1 c2
w2 − c1w − c2 = 0

r1 r2
R(n) = α1rn

1 + α2rn
2

α1 α2

α1 α2

Example: Solving a LHRRWCC
of Degree 2

(1) From the recurrence, we see that and
 Characteristic eq. Is

(2) Factor: .
It follows that the roots are: and .
And so:

(3) Apply the initial conditions to :

(4) Solve for the two unknowns: and .

Thus the solution is

c1 = 3 c2 = − 2
∴ w2 − 3w − (−2) = w2 − 3w + 2 = 0

w2 − 3w + 2 = (w − 2)(w − 1)
r1 = 2 r2 = 1

R(n) = α12n + α21n = α12n + α2

R(n) = α1rn
1 + α2rn

2
R(0) = α1 + α2 = 200 R(1) = 2α1 + α2 = 220

α1 = 20 α2 = 180

R(n) = 20 ⋅ 2n + 180 ⋅ 1n = 20 ⋅ 2n + 180

Solve:

 where and

R(n) = 3R(n − 1) − 2R(n − 2)
R(0) = 200 R(1) = 220

“Divide & Conquer” Recurrence Relations

• Background:

• “Divide and Conquer” is a military, political, and algorithmic tactic:

• Military: Disconnect one half of a battle group from the other, and
the two halves are much easer to defeat

• Political: Force the liberal and conservative wings of a political
party to squabble, and the other party finds its work to be more
easily accomplished

• Algorithmic: Solving two halves of a problem (and combining the
results to construct the original problem’s answer) is often more
efficient than solving the original problem directly

“Divide & Conquer” Recurrence Relations

Example:

(1) Binary Search 

  

(2) Best Case of Quicksort 
 

 + +  

 
[Worst case of Quicksort:]

S(1) = 1
S(n) = S(

n
2

) + k

Q(1) = 1
Q(n) = Q(

n
2

) Q(
n
2

) n

Q(n) = Q(n − 1) + n

Solving “Divide & Conquer” Rec. Relations

Example:

(continues…)

S(1) = 1

S(n) = S(
n
2

) + k

S(
n
2

) = S(
n
4

) + k ⇒ S(n) = S(
n
4

) + 2k

S(
n
4

) = S(
n
8

) + k ⇒ S(n) = S(
n
8

) + 3k

S(
n
8

) = S(
n

16
) + k ⇒ S(n) = S(

n
16

) + 4k

“Find The Pattern” (a.k.a. Iterative (or Backward) Substitutions)

Solving “Divide & Conquer” Rec. Relations

In general: , where

[Simplifying assumption: is a power of 2]

Let ; that is,

 is

But … do you believe?

S(n) = S(
n
2a

) + ak a ≥ 1, a ∈ ℤ

n
n = 2a a = log2 n

S(n) = S(
n
n

) + k log2 n

S(n) = S(1) + k log2 n
S(n) = 1 + k log2 n
∴ S(n) O(log2 n)

Solving “Divide & Conquer” Rec. Relations

Proof (weak induction):

Basis: .

Inductive Step: If then

Therefore,

n = 1 S(1) = 1 = k ⋅ 0 + 1 = k ⋅ log2 1 + 1

S(j) = k ⋅ log2 j + 1 S(2j) = k ⋅ log2(2j) + 1

S(2j) = S(
2j
2

) + k

= S(j) + k

= k ⋅ log2 j + 1 + k

= k(log2 j + 1) + 1

= k(log2 j + log2 2) + 1

= k ⋅ log2(2j) + 1

S(n) = k ⋅ log2 n + 1

Conjecture: S(n) = k ⋅ log2 n + 1

Applying the Recurrence

Simplifying

By the Inductive Hypothesis

As we needed to show

Solving “Divide & Conquer” Rec. Relations

Example: Worst Case of Quicksort

Recall: and

Apparently, in general:

(continues…)

Q(1) = 1, Q(n) = Q(n − 1) + n
Q(n) = Q(n − 1) + n

Q(n − 1) = Q(n − 2) + (n − 1)
Q(n) = Q(n − 2) + n + (n − 1)

Q(n − 2) = Q(n − 3) + (n − 2)
Q(n) = Q(n − 3) + n + (n − 1) + (n − 2)

Q(n) = Q(n − k) +
k−1

∑
i=0

(n − i), k ∈ ℤ+

Solving “Divide & Conquer” Rec. Relations

If we continue, we’ll reach when

And this shows why Quicksort is in the worst case…

… But do you believe?

Q(n − k) = Q(1) k = n − 1

Q(n) = Q(n − (n − 1)) +
(n−1)−1

∑
i=0

(n − i)

= Q(1) +
n

∑
i=2

i

= 1 +
n

∑
i=2

i

=
n(n + 1)

2
O(n2)

Substituting

Simplifying

Combine Terms

By Gauss

Solving “Divide & Conquer” Rec. Relations

Proof (weak induction):

Basis: . . Ok!

Inductive Step: If , then .

Therefore,

n = 1 Q(1) = 1 =
2
2

=
1(1 + 1)

2

Q(k) =
k(k + 1)

2
Q(k + 1) =

(k + 1)(k + 2)
2

Q(k + 1) = Q(k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
(k + 1)(k + 2)

2

Q(n) =
k(k + 1)

2

Conjecture: Q(n) =
n(n + 1)

2

Applying the recurrence

By the Inductive Hypothesis

After a bunch of algebra

Extra Slides

Approximate Solutions to Rec. Relations

Theorem: (The Master Theorem) Given a recursive function of the
form , where:

 is an increasing function,
,

 is an integer ,
 is a real
 is an integer
 is a real , and
 is a real , then:

T(n) = a ⋅ T(n/b) + c ⋅ n2

T(n)
n = bk

k > 0
a ≥ 1
b > 1
c > 0
d ≥ 0

f(n) =
O(nd) if a < bd

O(nd ⋅ log2 n) if a = < bd

O(nlogb a) if a > bd

Proof: Rosen

