Relations

Section 9.1, 9.3, 9.5, 9.6

Background

- Having collections of data: Good
- Knowing the connections between collections: Better!
- **Example**:
 - Students Courses
 - Businesses Email Adresses
 - Dogs Trees

Relations

Definition: (Binary) Relation

A binary relation from set X to Y is a subset of the Cartesian Product of X (the domain) and Y (the codomain).

NOTE: a relation "on set W" \equiv "from set W to set W".

Example:

 $A = \{$ Leslie Knope, Jim Halpert, Michael Scott, Ann Perkins, Ben Wyatt $\}$

 $B = \{ \text{Parks and Rec}, \text{The Office} \}$

 $R = \{(\text{Leslie Knope, Parks and Rec}), (JH, O), \\ (MS, O), (AP, P&R), (BW, P&R)\}$

Relations

Definition: <u>Related</u>

If $(x, y) \in R$, x is related to y (x R y)

Example:

(Leslie Knope, Parks and Rec) $\in R$ (Leslie Knope R Parks and Rec) (Jim Halpert, Parks and Rec) $\notin R$ (Jim Halpert \cancel{R} Parks and Rec)

Let $H = \{1,2,3,4,5,6\}$ and let R be a relation on H such that x R y when x % y = 0, $x \neq y$

 $R = \{(2,1), (3,1), (4,1), (5,1), (6,1), (4,2), (6,2), (6,3)\}$

Defining Relations

- Relations are just sets of ordered pairs
 - We can use set builder notation to define sets

Example:

 $A = \{ \text{Leslie Knope, Jim Halpert, Michael Scott,} \\ \text{Ann Perkins, Ben Wyatt} \}$

$$B = \{$$
 Parks and Rec, The Office $\}$

 $R = \{(a, b) | a \in A \land b \in B \land a \text{ is a character in } b\}$

Let $H = \{1,2,3,4,5,6\}$ and we want a relation on H such that x R y when $x \% y = 0, x \neq y$

$$R = \{ (x, y) \, | \, x, y \in H \land x \,\% \, y = 0 \}$$

Playposit

- Let $A = \{2,4,6\}$. Let R be the relation on A where $(x, y) \in R$ when $\frac{x}{y} \in \mathbb{Z}$. Which of the following ordered pairs are in R?
 - (2,2) (2,4) (2,6)• (4,2) • (4,4) • (4,6)• (6,2) • (6,4) • (6,6)

• Graphs:

 A set V of vertices (nodes) and a set E of pairs of vertices that represent an edge between those two vertices

• Directed Graphs (Digraph):

- A set V of vertices (nodes) and a set E of pairs of vertices that represent an edge between those two vertices
- In edge (a,b), a is the initial vertex and b is the terminal vertex

• Example:

- $A = \{ \textbf{Leslie Knope, Jim Halpert, Michael Scott,} \\ \textbf{Ann Perkins, Ben Wyatt} \}$
- $B = \{ \text{Parks and Rec}, \text{The Office} \}$
- $R = \{ (\text{Leslie Knope, Parks and Rec}), (JH, O), \\ (MS, O), (AP, P&R), (BW, P&R) \}$

• **Example:** $x \% y = 0, x \neq y$

Recall: $H = \{1, 2, 3, 4, 5, 6\}$ $R = \{(2,1), (3,1), (4,1), (5,1), (6,1), (4,2), (6,2), (6,3)\}$

Note: Vertices with just one outgoing edge are prime

Playposit

Let $A = \{1, 2, 3, 4\}$. What relation does the below graph represent?

A.
$$R = \{(x, y) | x - y > 0 \land x, y \in H\}$$

B. $R = \{(x, y) | xy < 5 \land x, y \in H\}$
C. $R = \{(x, y) | x + y \ge 6 \land x, y \in H\}$
D. $R = \{(x, y) | (x + y) \% 2 = 0 \land x, y \in H\}$

Definition: <u>*Reflexivity*</u>

A relation R on set A is reflexive when $(a, a) \in R$, $\forall a \in A$

Example:

$$\{1,2\} \times \{1,2\} = \{(1,1), (1,2), (2,1), (2,2)\}$$

(A directed edge whose source is also the destination is a <u>self-loop</u>)

Definition: <u>Symmetry</u>

A relation *R* on set *A* is symmetric if $(a, b) \in R$ whenever $(b, a) \in R$, for $a, b \in A$

(All non-self-loop edges are 'back-and-forth')

Example:

 $R = \{(1,1), (1,2), (2,1), (2,2)\}$ on $A = \{1,2\}$ is symmetric

 $R = \{(a, c), (a, d), (c, a), (b, c)\}$ on $A = \{a, b, c, d\}$ is <u>not</u> symmetric ((d, a) and (c, b) are missing.)

Example: Graph Representation & Symmetry

(Excepting self-loops, just have back-and-forth arrows)

(Easy to see that (d, a) and (c, b) are missing

Playposit

Which of the following is true for the relation represented by the below graph?

- A. It is only symmetric.
- B. It is only reflexive.
- C. It is both reflexive and symmetric.
- D. It is neither reflexive nor symmetric.

Definition: <u>Antisymmetry</u>

A relation *R* on set *A* is antisymmetric if $(x, y) \in R$ and $x \neq y$, then $(y, x) \notin R$, $\forall x, y \in A$.

(No non-self-loop edges are 'back-and-forth')

Example:

 $\{(3,4)\}$ on $\{3,4\}$ is antisymmetric ((4,3) is not present)

 $\{(1,1),(3,1),(1,3)\}$ on $\{1,3\}$ is <u>not</u> antisymmetric

 $\{(a, c), (a, d), (c, a), (b, c)\}$ is <u>not</u>

(Thus, relations may be neither symmetric nor antisymmetric.)

Example: Graph Representation & Antisymmetry

 $R = \{(a, c), (a, d), (c, a), (b, c)\} \text{ as a digraph}$

(The offending 'double edge'

Is easy to see)

 $R = \{(1,1), (2,2)\}$ on $\{1,2\}$

(both symmetric & antisymmetric) as a digraph:

Playposit

Which of the following is true for the relation represented by the below graph?

- A. It is only symmetric.
- B. It is only antisymmetric.
- C. It is both symmetric and antisymmetric.
- D. It is neither symmetric nor antisymmetric.

Definition: <u>*Transitivity*</u>

A relation *R* on set *A* is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, where $a, b, c \in A$

Example:

$$R = \{(x, y), (x, z), (y, z), (z, x), (z, y)\} \text{ on } \{x, y, z\}$$

(x, y) & $(y, z) \Rightarrow (x, z)$, which is $\in R$

(y, z) & $(z, y) \Rightarrow (y, y)$ which is <u>not</u> in *R*

 $\therefore R$ is <u>not</u> transitive

Example:

 $S = \{(4,5), (4,6), (4,7), (5,6), (5,7), (6,7)\} \text{ on } \{4,5,6,7\}$ $(4,5) \& (5,6) \Rightarrow (4,6)$ $(4,6) \& (6,7) \Rightarrow (4,7)$ $(5,6) \& (6,7) \Rightarrow (5,7)$

 $\therefore S$ is transitive

(Note: Digraphs don't really help see transitivity)

Example:

 $S = \{(4,5), (4,6), (4,7), (5,6), (5,7), (6,7)\} \text{ on } \{4,5,6,7\}$ $(4,5) \& (5,6) \Rightarrow (4,6)$ $(4,6) \& (6,7) \Rightarrow (4,7)$ $(5,6) \& (6,7) \Rightarrow (5,7)$

 $\therefore S$ is transitive

(Note: Digraphs don't really help see transitivity)

- Three examples of creating relations from relations
- **Example #1:** Set operators
 - **Recall: A relation is a set of ordered pairs**

Let
$$A = \{1,2,3\}$$

 $R = \{(1,2), (1,3)\}$ on A
 $S = \{(1,1), (2,3)\}$ on A

 $R \cup S = \{(1,2), (1,3), (1,1), (2,3)\} \text{ on } A$ is also a relation on A

• **Example #2:** Swapping content of ordered pairs $(1,2) \Rightarrow (2,1)$

Definition: <u>Inverse</u>

The inverse of a relation R, denoted R^{-1} , contains all of the ordered pairs of R with their components exchanged

That is: $R^{-1} = \{(b, a) | (a, b) \in R\}$

• Example #3: Composites Remember: $f \circ g = f(g(x))$ Definition: Composite

Let *G* be a relation from *A* to *B*, and *F* be a relation from *B* to *C*. The composite of *F* and *G*, $F \circ G$, is the relation of ordered pairs $(a, c), a \in A, c \in C$, such that $(a, b) \in G$ and $(b, c) \in F$, where $b \in B$

Example:

Let $X = \{(1,a), (2,b), (3,c)\}$ $Y = \{(1,2), (2,3), (1,3), (2,4)\}$ $X \circ Y = \{(1,b), (2,c), (1,c)\}$

• **Example #3:** Composites (cont)

Example:

Let
$$C = \{(\alpha, -4), (\alpha, -2), (\beta, -6), (\gamma, -4)\}$$

 $D = \{(q, \beta), (x, \alpha), (x, \gamma)\}$
 $C \circ D = \{(q, -6), (x, -4), (x, -2)\}$
(Note that $(x, -4)$ is not repeated; this is a set)

Definition: <u>Complement</u>

The complement of a relation *R*, denoted *R*, is $\{(a, b) | (a, b) \notin R\}$

- We assume that relations are on just one set
- The 0-1 matrix representation of relation *R* on set *A* is |*A* | × |*A* |, with both dimensions labeled identically.
 When (*a*, *b*) ∈ *R*, then matrix[a][b]=1. Else, matrix[a][b]=0

Example:

 $R = \{(a, c), (a, d), (c, a), (b, c)\} \text{ on } \{a, b, c, d\}$

$$M = \begin{bmatrix} a & b & c & d \\ 0 & 0 & 1 & 1 \\ b & 0 & 0 & 1 & 0 \\ c & 1 & 0 & 0 & 0 \\ d & 0 & 0 & 0 \end{bmatrix}$$

- **Observation #1:** Detecting Reflexivity
 - A relation is reflexive when its corresponding matrix representation has no 0's along the main diagonal

Example:

$$R = \{(1,1), (1,2), (2,2)\} \text{ on } \{1,2\}$$

The main diagonal is all 1's; $\therefore R$ is reflexive

- **Observation #2:** Detecting Symmetry
 - Let matrix *M* represent *R*. *R* is symmetric when $m_{ij} = 1$ iff $m_{ji} = 1$ is true

Example:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

When the relation is symmetric, the matrix is symmetric

- **Observation #3:** Detecting Transitivity
 - Let matrix M represent R. R is transitive when the non-zero elements of M^2 (or of $M^{([2])}$) are also non-zero in M

Example:

Is $\{(1,1), (2,2), (2,3), (3,2)\}$ on $\{1,2,3\}$ transitive?

ſ	1	0	0		Γ1	0	[0		Γ1	0	[0
	0	1	1	•	0	1	1	=	0	2	1
	_0	1	0		LO	1	0		LO	1	1

So, no, the relation is not transitive

- **Observation #3:** Detecting Transitivity
 - Let matrix M represent R. R is transitive when the non-zero elements of M^2 (or of $M^{([2])}$) are also non-zero in M

Why does this work?

Consider $R = \{(1,1), (2,2), (2,3), (3,2)\}$

Equivalence Relations

Definition: <u>Equivalence Relation</u>

A relation on set A is an equivalence relation if it is *reflexive, symmetric,* and *transitive.*

Example:

 $A = \{2,3,4\}$. Let Q be a relation on A such that a = b, $\forall a, b \in A$

Thus $Q = \{(2,2), (3,3), (4,4)\}$ Reflexive? Symmetric? Transitive?

Equivalence Relations

Example:

 $B = \{-2, -1, 0, 1, 2\}$. Let *R* be a relation on *B* such that $|a| = |b|, \forall a, b \in B$

Thus
$$R = \{(0,0), (1,1), (1, -1), (-1,1), (-1, -1), (2,2), (2, -2), (-2, 2), (-2, -2)\}$$

This is also an equivalence relation.

Playposit

Is the following relation on $\{a, b, c\}$ an equivalence relation (if no, select the answer that explains why)?

$$R = \{(a, a), (a, b), (b, a), (b, b), (b, c), (c, b), (c, c)\}$$

- A. Yes, it is an equivalence relation.
- B. No, because it is not transitive.
- C. No, because it is not symmetric.
- D. No, because it is not reflexive
- E. None of the above

Equivalence Relations

So ... why are these called *equivalence* relations?

Recall:

$$R = \{(0,0), (1,1), (1, -1), (-1,1), (-1, -1), (-1, 2), (-2, 2),$$

Note the "clusters" of 0's, 1's, and 2's. This gives a partition of the base set B:

$$\{\{0\}, \{-1,1\}, \{-2,2\}\}$$

Equivalence Relations

Definition: <u>Equivalence Class</u>

The equivalence relation R on set B, and an element $b \in B$, is $\{c \mid c \in B \land (b, c) \in R\}$ and is denoted [b]. (That is, the set of everything paired with & on the right side of b in R

Example: (From previous slide) $[1] \Rightarrow \{c \mid c \in B \land (1,c) \in R\}$ *R* contains (1,1) and (1, -1), so $[1] = \{1, -1\}$.

Playposit

Which of the following is the equivalence class for [2]?

 $R = \{(1,1), (2,2), (2,3), (3,2), (3,3)\}$

- A. {1,2}
 B. {1,3}
 C. {2,3}
- D. {1,2,3}

Partial Orders

- Consider scheduling the construction of a house.
- Example: foundation, then walls, then paint
 - But what about bathroom tile and the kitchen sink?

Definition: Reflexive (a.k.a. Weak) Partial Order

A relation R on set A is a (reflexive/weak) partial order if it is *reflexive, antisymmetric,* and *transitive.*

Notation: $x \leq y$ means $(x, y) \in R$ when *R* is a partial order

Partial Orders

Example:

 $S = \{(1,1), (1,2), (2,2), (3,1), (3,2), (3,3)\} \text{ on } \{1,2,3\}$

- Is *S* reflexive?
- Antisymmetric?
- Transitive?
- $\therefore S$ is a week partial order

(Note: A partially-ordered set is called a poset)

Partial Orders

Definition: *<u>Irreflexivity (of Relations)</u>*

A relation *R* on set *A* is irreflexive if $\forall a \in A$, $(a, a) \notin R$ (Note: Not the same as "not reflexive")

Definition: Irreflexive (a.k.a. Strict) Partial Order

A relation R on set A is a irreflexive partial order if it is *irreflexive, antisymmetric,* and *transitive.*

(Thus no self-loops allowed.)

Playposit

Which type of partial order (if any) is the following relation on $\{a, b, c\}$?

$$R = \{(a, a), (b, a), (c, b), (c, c)\}$$

- A. Reflexive (a.k.a Weak) Partial order
- B. Irreflexive (a.k.a Strict) Partial order
- C. It is not a partial order.

Total Orders

Definition: <u>Comparable</u>

Let *R* be a weak partial order on set *A*. *a* and *b* are comparable if $a, b \in A$ and either $a \leq b$ or $b \leq a$. (That is, $(a, b) \in R$ or $(b, a) \in R$)

Definition: <u>Total Order</u>

A weak-partial-ordered relation R on a set A is a total order if every pair of elements $a, b \in A$ are comparable. (Or: A relation R on A is a total order if R is antisymmetric, transitive, and comparable.)

Total Orders

Example:

 $S = \{(1,1), (1,2), (2,2), (3,1), (3,2), (3,3)\} \text{ on } \{1,2,3\}$

It is a partial order and the pairs (1,2), (3,1) and (3,2) show that all elements are comparable. \therefore Total Order!

Let $T = \{(1,1), (1,3), (2,2), (2,3), (3,3)\}$ on $\{1,2,3\}$

Reflexive? Antisym? Transitive? ... Partial Order

But: 1 and 2 are not comparable; this is <u>not</u> a total order.

Playposit

Which property does this relation on $\{a, b, c, d\}$ fail to satisfy in order to be a total order. ?

 $R = \{(a, a), (a, d), (b, b), (c, a), (c, b), (c, c), (c, d), (d, d)\}$

- A. Reflexive
- B. Antisymmetric
- C. Transitive
- D. Comparable

Summary

- Equivalence Relation and Partial Orders Definitions
 - Equivalence Relation: Reflexive Symmetric Transitive
 - Weak Partial Order: Reflexive Antisymmetric Transitive
 - Strict Partial Order: Irreflexive Antisymmetric Transitive
 - Total Order: Weak Partial Order + Comparability or: comparable antisymmetric transitive