

Set Concepts Covered in the Math Review

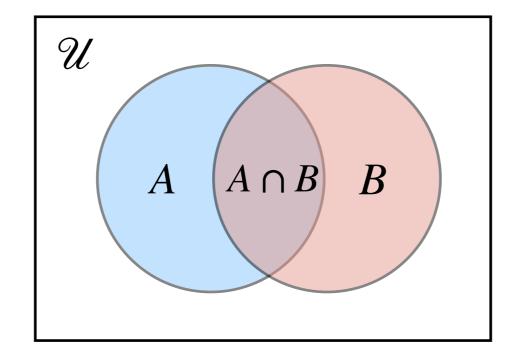
- Properties of Sets
- Set notation
- Operators
- Venn diagrams

Properties of Sets

- <u>Sets</u> are collections of <u>unordered</u>, <u>distinct</u> objects (no duplicates)
- Objects in a set are called <u>members</u> (or <u>elements</u>) of that set
- If *x* is a member of *S*, we write $x \in S$
- The number of elements in a set is called its *cardinality* written
- Infinite sets are often written using set builder notation

 $S = \{x \mid x \text{ has property } p\}$

Venn diagrams



Why are We Studying Sets?

- Sets are foundational in many areas of Computer Science:
 - E.g.
 - Relational Model of DBMS's
 - Based on Set theory
 - "Hard" Problems in CS
 - E.g. Set covering (what is the smallest number of special forces commandos that can be selected such that the mission team has at least one person with each necessary skill?)

Subsets & Supersets

Definition: <u>Subset</u>

Set *A* is a subset of set *B* ($A \subseteq B$) if every member of *A* can be found in *B*. In other words, $A \subseteq B \equiv \forall z (Z \in A \rightarrow z \in B), z \in \mathcal{U}$

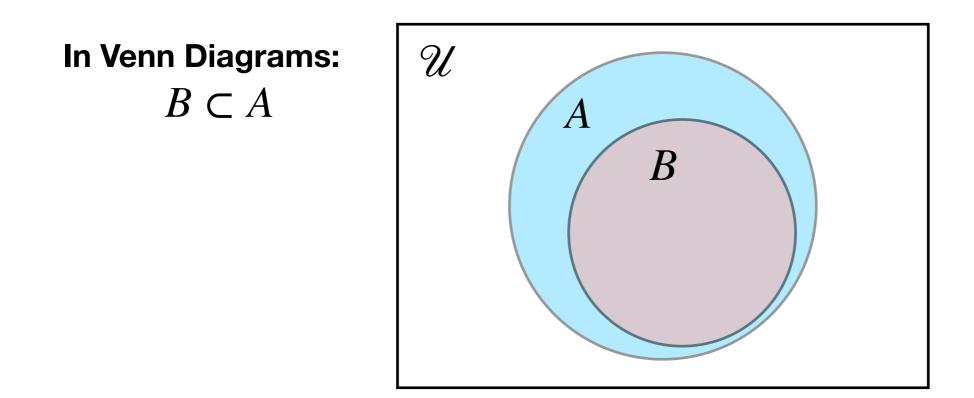
Definition: Proper Subset

Set *A* is a proper subset of set *B* ($A \subset B$) if $A \subseteq B$ and $A \neq B$. In other words, $A \subset B \equiv \forall z (Z \in A \rightarrow z \in B)$ $\land \exists w (w \notin A \land w \in B), z, w, \in \mathcal{U}$

Definition: <u>Superset</u>

If $A \subseteq B$, then *B* is called a superset of *A*, written $B \supseteq A$

Subsets & Supersets



Example: Let $G = \{1,3,4\}$ and $H = \{1,2,3,4,5\}$ Is $G \subseteq H$? Is $G \subset H$? Is $H \subseteq G$? Yes Yes No

Set Equality

Definition: <u>Set Equality</u>

Sets A and B are equal (A = B) iff $A \subseteq B$ and $B \subseteq A$.

Example:

Let
$$J = \{a, b, c, d\}$$
 and $K = \{b, d, c, a\}$
Is $J \subseteq K$? Yes Is $J \subset K$? No
Is $K \subseteq J$? Yes Is $K \subset J$? No
Does $I = K$? Yes

Power Sets

Definition: <u>Power Set</u>

The power set of set A, written $\mathscr{P}(A)$, is the set of all of A's subsets, including the empty set.

Example:

Let $A = \{\alpha, \beta\gamma\}$ $\mathscr{P}(A) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\alpha, \beta, \gamma\}\}, \{\alpha, \beta, \gamma\}\}.$ Note: $|\mathscr{P}(X)| = 2^{|X|}$

Generalized Forms of U and ∩

• Remember summation and product notation? E.g.

•
$$\sum_{n=1}^{9} (2n+1)$$

- Similar notation is used to generalize the union and intersection operators.
- Assuming that $A_1 \dots A_m$ and $B_1 \dots B_m$ are sets, then:

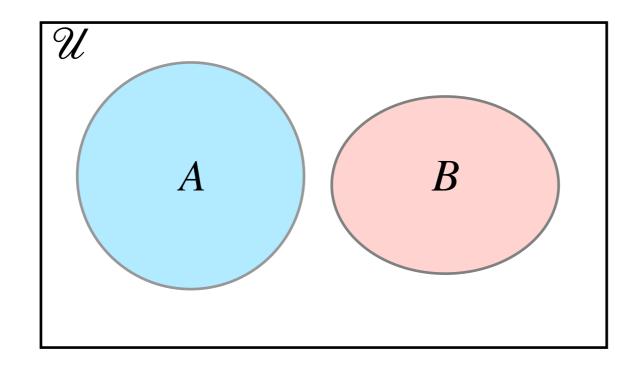
•
$$\bigcup_{i=1}^{m} A_i = A_i \cup A_2 \cup \ldots \cup A_m$$

•
$$\bigcap_{i=1}^{m} B_i = B_i \cap B_2 \cap \ldots \cap B_m$$

Two More Set Properties

Definition: <u>*Disjoint*</u>

Two sets are disjoint if their intersection is the empty set. I.e. *A* and *B* are disjoint when $A \cap B = \emptyset$



Two More Set Properties

Definition: <u>*Disjoint*</u>

Two sets are disjoint if their intersection is the empty set. I.e. *A* and *B* are disjoint when $A \cap B = \emptyset$

Definition: <u>Partition</u>

A separation of members of a set into disjoint subsets.

Example:

Let
$$C = \{a, e, i, o, u\}$$
 and $D = \{g, j, p, q, y\}$.

 $C \cap D = \emptyset$, thus C and D are disjoint

A partition of $C : \{\{a, e\}, \{i\}, \{o, u\}\}$

Examples of Set Identities

Associativity	$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
Commutativity	$A \cap B = B \cap A$ $A \cup B = B \cup A$
Distributivity	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Note: As with logical identities, you do not need to memorize set identities

Expressing Set Operations in Logic

• We've seen the first two already:

 $A \subseteq B \equiv \forall z \, (Z \in A \to z \in B), \, z \in \mathcal{U}$

 $A \subset B \equiv \forall z \, (Z \in A \to z \in B) \land \exists w (w \notin A \land w \in B), \, z, w, \in \mathcal{U}$

• For those that return sets, Set Builder notation is a good choice

$$\begin{array}{rccc} X \cup Y &\equiv & \{z | z \in X \lor z \in Y\} \\ X \cap Y &\equiv & \{z | z \in X \land z \in Y\} \\ X - Y &\equiv & \{z | z \in X \land z \notin Y\} \\ \hline \overline{X} &\equiv & \{z | z \notin X\} \end{array}$$

- To prove that set expressions S and T are equal, we can:
 - 1. Prove that $S \subseteq T$ and $T \subseteq S$, or
 - 2. Convert the equality to logic to prove it, and convert back

Example:

To Prove $S \cup \mathcal{U} = \mathcal{U}$ (Law of Domination), either:

- 1. Prove both $S \cup \mathcal{U} \subseteq \mathcal{U}$ and $\mathcal{U} \subseteq S \cup \mathcal{U}$, or
- 2. Express with set builder notation and logic operators, prove, and convert back to set operators

 $\underline{\text{Conjecture}}: S \cup \mathcal{U} = \mathcal{U}$

Proof (direct): We will show $S \cup \mathcal{U} \subseteq \mathcal{U}$ and $\mathcal{U} \subseteq S \cup \mathcal{U}$

<u>Case 1</u>: Demonstrate $S \cup \mathcal{U} \subseteq \mathcal{U}$

 $\begin{array}{rcl} S \cup \mathcal{U} \subseteq \mathcal{U} & \equiv & \forall z \ z \in (S \cup \mathcal{U}) \rightarrow z \in \mathcal{U} & [\text{Def of } \subseteq] \\ & \equiv & \forall z \ z \in (S \cup \mathcal{U}) \rightarrow T & [\text{Def of } \mathcal{U}] \\ & \equiv & \forall z \ \neg z \in (S \cup \mathcal{U}) \lor T & [\text{Law of Imp.}] \\ & \equiv & \forall z \ T & [\text{Domination}] \\ & \equiv & T & [\text{Tautology}] \end{array}$

(Continued ...)

<u>**Case 2:**</u> Demonstrate $\mathscr{U} \subseteq S \cup \mathscr{U}$

Therefore, $S \cup \mathcal{U} = \mathcal{U}$ Note: Can't move from ... $\rightarrow z \in S \cup \mathcal{U}$ to ... $\rightarrow z \in \mathcal{U}$ because that's applying the conjecture.

<u>Conjecture</u>: $S \cup \mathcal{U} = \mathcal{U}$

Proof (direct): We will show using set builder notation

$$\begin{split} S \cup \mathcal{U} &= \{ z | z \in S \lor z \in \mathcal{U} \} & \text{[Def of } \cup \text{]} \\ &= \{ z | z \in S \lor T \} & \text{[Def of } \mathscr{U} \text{]} \\ &= \{ z | T \} & \text{[Domination]} \\ &= \mathcal{U} & \text{[Def of } \mathscr{U} \text{]} \end{split}$$

Therefore, $S \cup \mathcal{U} = \mathcal{U}$

<u>Conjecture</u>: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Proof (direct): Using set notation

$$\overline{A \cup B} = \{x | x \notin A \cup B\}$$

$$= \{x | \neg (x \in A \cup B)\}$$

$$= \{x | \neg (x \in A \cup B)\}$$

$$= \{x | \neg (x \in A) \lor (x \in B))\}$$

$$[Def of \neg]$$

$$= \{x | \neg (x \in A) \land \neg (x \in B)\}$$

$$[Def of \neg]$$

$$= \{x | (x \notin A) \land (x \notin B)\}$$

$$[Def of \neg]$$

$$= \{x | (x \in \overline{A}) \land (x \in \overline{B})\}$$

$$[Def of Comp.]$$

$$= \{x | x \in \overline{A} \cap \overline{B}\}$$

$$[Def of \cap.]$$

$$= \overline{A} \cap \overline{B}$$

Final Set Operator: Cartesian Product

Definition: <u>Ordered Pair</u>

An ordered pair is a group of two items (a, b) such that $(a, b) \neq (b, a)$ unless a = b.

Definition: Ordered n-Tuple An ordered tuple is an ordered collection of *n* items

 $(a_i, a_2, ..., a_n)$ with a_i as its first element, a_2 as its second element, ..., and a_n as its last (n^{th}) element.

Example:

- (1,2) is a different ordered pair than (2,1)
- ⇒ Remember: An ordered pair is *not* a set (But you *can* create a set of ordered pairs!)

Final Set Operator: Cartesian Product

Definition: <u>Cartesian product</u>

The Cartesian Product of sets *A* and *B* ($A \times B$) is the set of all ordered pairs (a, b), $a \in A$, $b \in B$. Or $X \times Y \equiv \{(x, y) | x \in X \land y \in Y\}$

Example:

$$A = \{ \Box, \Delta \}, B = \{r, s\}$$
$$A \times B = \{(\Box, r), (\Box, s), (\Delta, r), (\Delta, s)\}$$
$$B \times A = \{(r, \Box), (s, \Box), (r, \Delta), (s, \Delta)\}$$

Notes: $A \times B \neq B \times A$, in general $|A \times B| = |A| \cdot |B|$

Computer Representation of Sets

• Bit Vectors: One position per element in \mathscr{U} . # of bits = $|\mathscr{U}|$

Let
$$\mathcal{U} = \{a, b, c, d, e, f\}$$

 $A = \{b, c, e\} \Rightarrow 011010$
 $B = \{a, c, e, f\} \Rightarrow 101011$

 $\overline{A} \Rightarrow \overline{011010} = 100101 \quad (\{a, d, f\})$

 $\begin{array}{ccccccccc} A \cup B & \Rightarrow & 011010 & A \cap B & \Rightarrow & 011010 \\ & & & & & 101011 & & & & & & \\ \hline 111011 & & & & & & & & \\ \hline \end{array}$