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ABSTRACT

This dissertation re-frames the problem of program understanding as a data analysis
problem: if we can understand the data that exists in a program, we can understand the
program. From this perspective, we apply visualization principles to take a visualiza-
tion first approach to understanding program behavior. In past research, visualization
researchers have crafted a set of principles for creating visualizations that effectively
present data for human understanding. These principles have successfully been applied
when creating visualizations in a wide variety of domains, demonstrating the effec-
tiveness of visualizations created using these principles at presenting data for human
consumption. However, while there exists work in software visualization as well as
understanding programs without visualization, limited research exists on directly ap-
plying visualization principles to the domain of program understanding and debugging.
This dissertation addresses this gap along two primary avenues: (1) using visualiza-
tion to understand general programs and (2) using visualization to understand specific
categories of programs, namely non-linear dimensionality reductions.

Along the first avenue, we present two visualization tools Anteater and ProgDiff.
Anteater defines a mapping from the data collected in program traces to a visualization
design framework that enables us to then apply visualization principles. It defines
how trace data maps to common data structures used in visualization, and how to
map from those data structures to effective interactive visualizations. Anteater then
operationalizes this mapping to create a prototype implementation of a system for
visualizing general Python programs. ProgDiff extends Anteater’s mapping to support
the comparison of multiple executions of a program through visualizations that apply
visualization principles for comparison.

ProgDiff supports visualizing the effects of change in general Python programs.
However, by narrowing the scope to specific classes of programs and specific types of

change, we can create more descriptive visualizations of the effect of those changes.



DimReader is an example of this where we narrowed the focus to non-linear dimen-
sionality reductions. We augmented these programs with automatic differentiation to
simulate changes in the input data and record their effect on the positions of the pro-
jected points. After simulating this change, we applied visualization principles to create
explanatory visualizations for understanding the behavior of the projection.

In this dissertation, we have shown how a data analysis perspective enables the
creation of novel and effective visualizations for program debugging and understand-
ing. We have shown two extreme points in the design space: Anteater and ProgDiff
assume very little structure in the program and apply to very general programs whereas
DimReader assumes structure characteristic of dimensionality reduction programs that
enables the use of automatic differentiation. A natural question remains: given these
two extreme points, how can we find a middle ground that combines the explanatory
features of DimReader with the generalizability of Anteater and ProgDiff? Modern ma-
chine learning systems, specifically deep learning systems, encompass a broader class
of programs while supporting automatic differentiation, thus providing a natural target

for future investigations.



CHAPTER 1

INTRODUCTION

Understanding program behavior is a famously hard problem and encompasses a great
portion of programming time. In a study of live-streamed programming sessions by
experienced developers that ranged from 60-210 minutes, Alaboudi and Latoza, found
that 13-95% of programming time was spent debugging. Because of the substantial
burden of debugging, many researchers dedicate their time to creating new solutions
to alleviate the burden of these tasks [44], [74]. Debugging tasks inherently rely on the
inspection of data within a program, of which a program contains a multitude, both
explicit (e.g. calling structure and variable values) and implicit (e.g. derived values).
For example, when trying to understand the execution path to a specific function call,
the calling structure is of great importance. At its core, the calling structure this is just a
hierarchical data structure generated as the program runs. To understand the execution
path, a person simply needs to analyze this data structure. Data analysis methods
exist for analyzing such hierarchical data structures [76]. This leads to the question,
what does it look like to take a data analysis perspective on program debugging and
understanding?

In this dissertation we re-frame the problem of understanding program behavior
to take a data analysis perspective. From this perspective, if we collect the data from
within a program the only remaining barrier to understanding the program is the ability
to analyze the collected data. Well studied and effective methods for data analysis, such
as the use of visualization, can be employed to help analyze this data. In this work, we
transform programs to collect a variety of data as a program executes. After collecting
the data, we present it for analysis using visualization.

Munzner states that “computer-based visualization systems provide visual represen-
tations of datasets designed to help people carry out tasks more effectively” [89]. We

see many demonstrations of the effectiveness of visualization for data analysis tasks in
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recent research. For example, Saket et al. evaluate the effectiveness of basic visualiza-
tions on data analysis tasks [104] To present data effectively, visualizations need to be
carefully crafted using an established a set of principles for creating effective visualiza-
tions. At the forefront lies the principle that global views of data are more effective at
illustrating the behavior of a dataset than serial views of textual data. Shneidermann’s
well known mantra of “Overview first, zoom and filter, details on demand” embodies
this principle [113].It emphasizes the need for global views as the initial view of the
data with controls to filter to subsets of interest, and view the textual details last.
Anscombe’s quartet famously exemplifies the need for global views to view the entire
behavior of a dataset. . It presents a quartet of datasets with identical summary statis-
tics. Viewing the summary statistics alone or inspecting the values individually, does
not necessarily depict the true behavior of the data. In contrast, with visualization we
can quickly and easily see the behavior of each dataset. Anscombe’s quartet emphasizes
the need for global, visual views of datasets to understand the true behavior of data.
This principle of global views drives the way we design data visualizations. Other, more
task specific principles exists that further guide how we design visualizations, such as
principles for creating comparative visualizations. Research shows numerous successful
applications of these principles in a variety of domains. Despite their widespread use,
we have yet to apply them for understanding program behavior. While prior work on
software visualization exists, these works typically adhere to traditional perspectives of
program debugging and understanding, often by adding visualization on top of existing
serial debugging methods.

In this dissertation, we explore the how we can enable program understanding tasks

when we take a data analysis perspective and employ visualization principles.
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1.1 Solutions

We present solutions along two opposing directions. The first direction applies visual-
ization principles to support understanding the behavior of general Python programs.
It facilitates broad, program independent tasks. We present Anteater and ProgDiff in
this direction. In contrast, the second direction applies principles to support under-
standing the behavior of a specific class of programs and program specific tasks. Along
this direction, we present DimReader. DimReader facilitates understanding the behav-
ior of non-linear dimensionality reductions by answering the question “how would the

projection change if our input data changed”.

1.1.1 Anteater

In Chapter 2, we introduce Anteater. Anteater applies the basic principles of visu-
alization to create visualizations that enable program and debugging tasks in general
Python programs. To do this, we first map the data generated by a program as it exe-
cutes and the tasks in program debugging and understanding that rely on this data to
Munzner’s framework for visual design [89]. This mapping identifies the data structures
and types of data generated by a program and how to create effective visualizations of
the program data. Anteater operationalizes this mapping into a prototype debugging
system for Python programs. This system automatically instruments a program to
collect a trace containing the execution structure and desired variable values. It then
presents this data using a variety of interactive visualizations. Anteater demonstrates
the effectiveness of a visualization first approach for general program debugging and

understanding tasks.

12



1.1.2 ProgDiff

In Chapter 3, ProgDiff extends Anteater to support the comparison of consecutive
program executions. In doing so, ProgDiff supports a common debugging practice of
making minor changes and inspecting the effects on the programs execution. People
commonly use this method for tasks such as to validating bug fixes and comparing the
results of different parameter settings. Despite the popularity of this method, existing
debugging and understanding methods do not inherently support the comparison of
multiple program executions. ProgDiff extends the mapping defined in Anteater and
applies visualization principles of comparison to support comparative debugging tasks.
It modifies the tracing infrastructure to detect and record changes from the previous
version of the program. After executing the new version of the program, ProgDiff
creates a mapping of the new trace to the previous version, marking the parts that
were added, deleted, or changed. It passes the marked trace to the front-end where
it generates comparative visualizations that highlight the differences between the two

executions.

1.1.3 DimReader

Chapter 4 we introduce DimReader. Unlike Anteater and ProgDiff, DimReader only
supports a specific class of programs: non-linear dimensionality reductions (NDR’s).
NDR’s share a common structure: they take in a high dimensional dataset, perform
a series of calculations, and return a two-dimensional representation of the original
data. Narrowing our focus to this class of programs allows us to take advantage of this
common structure and create more descriptive visualizations that rely on this structure.
Like ProgDiff, DimReader focuses on evaluating the effects of change. However, while
ProgDiff supports general program changes, DimReader focuses on perturbations of the

input dataset. By inspecting the effects of perturbations of the input data, we build
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an understanding of how he input data to influences the position of projected points.
Additionally, DimReader does not require the data to be physically perturbed. Instead,
it simulates the perturbation of the data through the calculation of the derivatives of the
projected coordinates. DimReader augments NDR’s with automatic differentiation to
calculate the derivatives of the projected coordinates as the projection executes. Once
DimReader collects the derivatives, it applies visualization principles to create global

visualizations of the effect of the perturbations on the overall projection.
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CHAPTER 2

ANTEATER

2.1 Introduction

Debugging and understanding program behavior is notoriously one of the most bur-
densome aspects of programming. It often requires programmers to trace through the
execution steps and values of their program. However, most tools require people to build
mental traces of their programs through the serial inspection of program values. Cur-
rent practices often involve stepping through debuggers, inserting logging statements,
or searching through source code, either manually or with a code browsing tool [77].

Additionally, traditional debuggers require programmers to set breakpoints at which
they inspect the program state, stepping through its line-by-line operation. Tiarks
et al. [122] observed that programmers experience difficulties in choosing breakpoint
locations, often forgetting analysis details while navigating the code. Furthermore,
traditional debuggers only present one view of the program: the whole program state
at a single step in time. While this view has its uses in debugging, it does not help with
bugs that present themselves over time (i.e. bugs where viewing a single instance of a
variable is insufficient for detecting the bug, see Gradient Descent usage scenario). To
detect those bugs, programmers must serially step through the values to build a mental
image of their behavior.

However, this method of incrementally inspecting values to build an internal mental
image of data directly contrasts the fundamental principles of data visualization. Con-
sider the traditional value proposition of data visualization. Visualization practitioners
now have a well-defined set of principles to drive the design, development, and testing
of interactive visualization software [10], [23], [113]. In contrast to inspecting datasets
serially, one element at a time, well-designed visual encodings can provide richer, faster,

and more global views of potentially important patterns.
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Figure 2.1: A programmer investigates a bug in their code. One common practice
(top row) is to instrument the program manually to collect suspicious variables (here,
x), and print their values. Manual instrumentation, however, is itself repetitive and
error-prone. Another common practice (second row) is to use a debugger to stop the
execution of the program and view each individual value assignment of x, providing a
precise, but narrow, one-at-a-time view of the values. Anteater (bottom row) automat-
ically instruments the code to track variables along with the context of their execution.
It presents the programmer with interactive visualizations providing a global view of
values, enabling easy detection of erroneous values as well as interactions that narrow
down the views to specific values.
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Because traditional debugging methods only provide serial views of program data,
they suffer from the same fundamental problem associated with the serial inspection of
data. The widely used “Visual Information Seeking Matnra”, as presented by Shnei-
dermann [113], states “overview first, zoom and filter, then details-on-demand”. We
have seen numerous successful applications of this mantra to data analysis problems.
However, we have yet to see this applied in a debugging context where serial inspec-
tion of data remains as the primary analysis method. We therefore see a need for an
exploratory debugging solution that provides more effective global views of values, pro-
viding debugging the same set of affordances that interactive visualization provides to
exploratory data analysis.

Consider the following debugging scenario. Programmer Patty has a bug in her
code. Her program returns a value that seems unreasonable. She believes that the
bug is occurring in a specific loop but cannot identify the root cause. Using a typical
debugger, she sets a breakpoint at the beginning of the loop and runs the debugger.
When the debugger reaches the breakpoint, she inspects the program values and takes a
few steps through execution but does not yet see the bug. Patty continues the program
until it hits the breakpoint again at the next iteration, repeating this process. She
continues to step through each iteration of the loop but has little success in finding the
bug.

After several iterations, Patty gives up on using the debugger and modifies the code
with print statements. She prints the variable she believes causes the bug and runs the
program. Patty scans through the printed values, trying to find any erroneous values,
but her loop has many iterations and she quickly gets lost in the print statements.

Her next idea is to write the values to a file and plot them. Patty first alters her
source code to write the values to a file. She then writes a script that reads the file and
plots the values. Now she sees the behavior of every instance of the value and pinpoint

the incorrect values. With this information, Patty returns to the debugger and stops
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the program when it reaches the iteration containing incorrect values to find the root
cause.

The scenario described above encompasses the typical ways programmers debug
their programs [122]. While not every bug requires all of these methods, programmers
typically use more than one of them. The fact that many programmers use a com-
bination of independent debugging-methods when fixing their programs prompts the
question: can we design a better debugger that 1) reduces the amount of manual in-
strumentation required, 2) gives the users greater control over the values they see, and
3) provides them with a visualization option automatically? While various debugging
tools address aspects of these problems, no existing debugger comprehensively addresses
all of them.

In response to these questions, we present Anteater, a system for debugging and
understanding programs designed with principles of interactive visualization as a driving
concern. We applied the framework for visual design as described by Munzner [89] to
create a debugging system from a visualization perspective. Fig. 2.1 gives an overview
of how Anteater compares to standard debugging practices. In taking a visualization-
first approach, Anteater provides more informative overviews of a program’s behavior
while supporting interaction to dig deeper into the details of the execution. Rather
than showing the whole state at a single step in time, it shows a single variable over the
entirety of the execution. Anteater aims to reduce the effort required from a user by 1)
automatically instrumenting programs to collect the values they want to inspect and
2) allowing them to browse values of interest easily throughout the entire execution,
without resorting to a step-through debugger.

If Programmer Patty had been using Anteater, she could have easily set Anteater
to track the value she believed to be raising issues along with any other values that she
believed to be potential roots of causation. Anteater would then trace her program and

provide her with visualizations to help her identify the iterations where the value was
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incorrect. Patty could then filter down the execution tree to those iterations and inspect
the rest of the values she tracked. With Anteater, Patty completes all of her debugging
in one place using only a few interactions and requiring no manual instrumentation.
In this chapter, we present a prototype implementation in Python that traces a
Python program to capture not only the execution structure but also values of interest
in context of the execution. Anteater then presents this trace to the user through
interactive visualizations. Fig. 2.2 presents an overview of the visualizations provided

by Anteater.

2.2 Related Work

Literature Search We compare Anteater to work we have found in software engineer-
ing, user interface design, information visualization, and visual analytics. Specifically,
we have searched the last 25 years of work related to visual debugging in the following
venues: ACM ICSE, ACM CHI, ACM UIST, IEEE VIS, and the SoftVis symposium.
The field of software visualization is large and we cannot hope to add every possible
reference; we recommend both textbooks from Diehl and Stasko as starting points into
the literature [37], [116]. Figure 2.1 gives a general overview of how Anteater com-
pares to common debugging methods and table 2.1 gives an overview of how Anteater

compares to the relevant existing work discussed in the this section.

Visual Debugging Many attempts have been made to leverage visualization prin-
ciples to augment the debugging process. Some efforts add visualization options to
breakpoint and step-through debuggers [14], [30], [38], [81], [82], [98], [102]. Tradi-
tional visual debuggers typically provide visualization views of variables at a specific
instance in time, much like traditional debuggers. Several of these tools add visualiza-
tions of objects to a traditional debugger [14], [30], [102]. Others provide visualizations

to show task-specific information about the execution, such as an overview of the heap
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Table 2.1: A comparison of Anteater with existing work in debugging visualizations.
This table contains most references from the Related work section with the exception
of [38], [81], [90], [114] which did not fit into the above categories. In this table, "single
time” refers to a single instance at a specific point in the execution whereas ”whole
time” refers to every instance throughout the entire execution. The colored circles
correspond to views and features that support the goals defined later in this paper.
Note, because of the generality of (-3, all systems aim to support this goal in some
capacity and as a result, all features and views support it in some way. When a cell
specifies specific references (e.g. v'- [8] or [62] - Vega ) this means that only those
references have the corresponding view or feature.
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Figure 2.2: An overview of the Anteater Ul on a recursive Fibonacci program, tracking
the variable “val”. (A) shows the UI presented by Anteater (not including (B)). The
generalized context tree (GCT), or icicle plot, shown on the top right side of (A), shows
the structure of the execution trace. The teal blocks represent function calls while the
varying shades of purple represent the value of “val” at that instance. We can see the
recursive calling structure of the Fibonacci function and can easily identify where it is
repeating work. The plot currently shows a scatterplot view of the variable “val” over
time. Brushing over the scatterplot highlights the corresponding instances in the GCT
(the red blocks shown in the GCT on the right side of (A)) and the context bar. The
scatterplot shows repetitive patterns that indicate that Fibonacci is doing redundant
work. (B) shows a second view of the GCT (inset into the image of the main UI) after
we’ve clicked on a block in the tree which caused its dependencies to be highlighted in
red. This shows that the selected block (on the far right of the fifth row in the GCT in
(B)), representing an instance of “val”, depends on the prior two calls to the Fibonacci
function (shown by the two blocks highlighted in red).
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and stack [2], [82] the impact of resource utilization on control flow [90], object muta-
tion [107], or run-time state and data structures of the program [118].

Generally, these tools present localized views that describe one particular state of
the execution. Some tools provide additional context by allowing back-stepping in the
debugger or providing a history of the execution [51], [81], [98]. In addition, some
tools provide global views to show the behavior of values over the entire execution.
Aftandilian et al. [2] give a global view of the heap by taking snapshots throughout the
program. Schulz et al. [107] provide a global view of object mutations; if the object
is numeric, the global view shows the value behavior throughout the execution. Some
tools give global views of value behaviors by introducing sparklines next to the line of
source code defining the value [8], [62]. In contrast, Anteater displays global views that
take the execution context into account. As we show in our evaluation, this perspective
can be particularly helpful in debugging scenarios.

Hoffswell et al. [63] and Burg et al. [19] describe systems for visually debugging
user interactions, one on Vega specifications and the other on web applications in gen-
eral. Similar to Anteater, both systems recognize the importance of recording program
behavior and providing global views of data to understand the inner-workings of a
program. They differ from Anteater in their focus on debugging interactions with an
application rather than the execution of a program.

Alsallakh et al. [4] created an Eclipse plugin that tracks specific tracepoints (equiva-
lent to a breakpoint in a debugger) throughout a program’s execution. Watchpoints can
also be added to a field on which the tracer will track assignments. The tool provides
global views of tracepoint instances through line charts where interactions provide ad-
ditional information about the program at that point and watchpoints through a step
chart of the values over time. While the plugin’s goals closely relate to those of our
prototype, Anteater stands apart for two reasons. First, Anteater traces all calls and

loops, rather than user-defined tracepoints, along with the values desired by the user.
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Second, Anteater presents all this information in a trace visualization with correspond-
ing plots of the tracked values. This information can provide the context necessary to
better understand why variables take on certain values.

The most similar tool to Anteater is Kang et al.’s [70] Omnicode. Omnicode pro-
vides run-time visualizations of program states, designed to aid novice users in building
mental models about programs. Crucially, Omnicode visualizes values in a live cod-
ing environment which updates in real time. The primary visualization provided is a
scatterplot matrix displaying plots for each variable over all execution steps. While
Omnicode and Anteater have much in common, they were designed for different audi-
ences (novices vs. general programmers) and thus support different types of programs.

We compare Omnicode and Anteater directly in the Discussion section.

Trace Visualization Trace visualizations are often applied in support of under-
standing parallel programs [71], [114], [124]. Often, trace visualizations leverage ici-
cle plots and flame graphs as the primary visual representation [11], [58], [71], [99],
[124]. Anteater uses a visual encoding reminiscent of icicle plots and flame graphs in
our plots of the execution trace, which we will call the generalized context tree (GCT),
after Boehme et al. [12] However, Anteater differs in its definition of trace. While
these previous traces capture the calling structure of the execution, Anteater extends
this to capture values of marked variables and expressions, as well as loop behaviors.
This extension provides users with additional context for how values are reached; see

Evaluation for a discussion of their utility.

2.3 Characterization of Anteater’s Design

This section describes the visualization framework used to characterize the problem
of program debugging from a visualization perspective. This perspective drove the

design Anteater. Additionally, it uses the taxonomy presented by Maletic et al [85] to
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characterize the system design of Anteater.

2.3.1 A Visualization Perspective on Program Debugging

In this section, we use the framework for visual design described by Munzner [89] to
characterize the problem of program debugging from a visualization perspective. This
was the driving perspective used to create Anteater. The framework consists of 3
parts: (1) what - the data abstraction, (2) why - the task abstraction, and (3) how
- the actual visualization design. This section describes how debugging maps to this
framework, with the following three sections describing in detail how Anteater applies

this perspective.

What - Data Abstraction: First, we need to understand the data involved in pro-
gram debugging. As a program executes, it inherently creates a collection of data.
This data includes items such as the values assigned to every variable, the value of
parameters passed into function calls, the structure of the execution (e.g. calls and
loops), time spent in each part of the program, etc. This data naturally maps to the
data types outlined in the framework. We will focus on a subset of the data generated
from sequential programs: the structure of the execution and the values assigned to
variables. These two forms of data correspond to two data types outlined in Munzner’s
framework.

The first data type is a tree. A sequential programs naturally executes in a hierar-
chical tree structure: the root of the tree represents the entry point into the program,
nodes represent execution steps (e.g. functions and loops), and the parent/child rela-
tionship signifies that the child was executed within the parent instruction (e.g. within
a function call or loop iteration). The tree creates a node every time the program enters
a function call or an iteration of a loop and it creates an edge between each node and

the parent function or loop that contains its instruction. In Munzner’s framework, this
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corresponds to the data types node and link and the dataset type network/tree. Addi-
tionally, each function call and loop contains additional attributes, such as the source
code line that corresponds to its instruction, the name of the function, the value of the
iterator for the loop, etc.

The second data type is a table. The values of program variables naturally organize
into tables. Each instance of a variable is a data item (a row in the table) that contains
several attributes that describe it (the columns in a table). To construct these tables,
a program must create a record every time the program assigns to a variable. The at-
tributes associated with a variables assignment include the line at which the assignment
occurred, the node in the execution tree that contains that assignment, the actual value
of the variable at that instance, etc. This clearly corresponds to table dataset in the
framework, with the item and attribute data types describing the entries in the table.

Anteater uses this data abstraction to create a visual representation of a program.
We describe the generation of this data with Anteater in more detail in the section

titled “Tracing Infrastructure and Data Organization”.

Why - Task Abstraction Now that we understand the data abstraction, we need
to understand how the data analysis actions and targets outlined in the framework map
to the domain of program debugging.

The high-level goal of debugging is to discover the source of unexpected or erroneous
program behavior. This behavior could either stem from misbehavior in the execution
structure (e.g. a function not being called as expected) or misbehavior in the variable
values (e.g. an incorrect calculation), or both. When debugging, programmers often
inspect the programs data to generate a hypothesis about why the program is misbe-
having or to validate an existing hypothesis about a bug. In Munzner’s framework,
this goal falls into the consume action of the analyze category. Additionally, this goal

corresponds to the overarching aim of Anteater.
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The framework allows us to separate the high-level goal of discovering unexpected
program behavior into 4 mid-level actions that correspond to the programmers prior
knowledge of the bug: lookup, locate, browse, and explore. These actions fall into the
search category of Munzner’s framework. First, a programmer may know precisely
what to look for and where to look for it (corresponding to the lookup action). For
example, if through prior debugging efforts they identified and corrected a calculation
error, they may then re-execute the program to lookup the new value to ensure that it
is correct. In this case, they know exactly what they are looking for and where to find
it in the program data.

Second, a programmer may know what the bug is but not where it is occurring
(corresponding to the locate action). For example, if a programmer knows that their
program is producing an erroneous output value, they know that somewhere in the
execution an erroneous value is assigned to the variable but they don’t know precisely
where.

Third, a programmer may know the general location of a bug, but not precisely what
is causing it (corresponding to the browse action). For example, a program deviates
from the expected execution path at line x but the programmer cannot immediately
see what causes the deviation. They must browse the program data around this point
to understand the behavior of the program at that point.

Fourth, a programmer may not know where the bug is or what is causing it (cor-
responding to the explore action). For example, a program finishes running but does
not return from the expected point in the program. The programmer must explore the
program data to locate where the program returns from and why it returns from this
point instead of the expected point.

At the lowest level of action exist the query actions. These actions correspond to
specific ways in which a programmer might query their program data for a debugging

tasks. While performing a lookup or locate action where the programmer knows what
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variable or function call causes a bug, the may identify the specific instance of that call
or variable to inspect all of the information collected about that instance. In contrast,
when performing a browse or explore action, programmers want to identify areas in the
program data that deviate from their expectations. A programmer may also want to
compare the values of two variables to understand or verify an expected relationship
between them. Last, for observing trends or patterns and identifying potential areas of
erroneous behavior in variables or the execution structure, programmers may want to
summarize the data with global views of the data.

The targets of these actions may be trends, outliers, or features of variable values
or execution structure that highlight the misbehavior. They may also be correlations
between variables that are perceived to be related or the distribution of a single variable.
When identifying unexpected execution structure, the target may be the topology of
the execution tree and paths through the tree that correspond to the execution stack
of the program.

Anteater provides interactive views of both the execution structure and variable
value data that allow people to perform these actions on program data. Global views of
the program value allow people to browse, explore, and summarize the data. Interactions
on the global views allow people to narrow their view to perform lookup and locate
actions. The ability to plot multiple variables on a single plot allows people to compare

variables.

How - Visual Design With the data abstraction and task abstraction defined, all
that remains is creating visualizations of the data that facilitate the specified tasks.
While there exist numerous options for creating visualizations of this data, we will
focus solely on those supported by Anteater. We will not go into detail about the
visual design here but will give a high level description of how Anteater’s visualizations

map to the framework. A full description of the visual design can be found in the section
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Figure 2.3: An overview of the Anteater system. In (a), a user chooses variables and
expressions to track using the Anteater interface. This defines the trace specification.
Then, Anteater sends the trace specification through the web interface to the python
backend, along with the source code. Next, in (b), the Anteater tracer instruments the
source code to collect execution information along with the specified values. (c) shows
a simplified version of this instrumentation. After the code is instrumented, Anteater
runs the program using python to create the program trace. This trace is passed back
through the web interface to the Anteater front end where (in (d)) it is visualized and
presented to the user.

“Anteater’s Visualization Design”. The framework breaks up visualizations into four
classes: encode, manipulate, facet, and reduce.

Anteater encodes the data using color and arrangement. For variable values, de-
pending on the type of variable, Anteater arranges the data tables into histograms,
barplots, scatterplots or parallel coordinates. Anteater arranges the execution tree into
an icicle plot to illustrate the hierarchical structure of the execution and creates a color
map to signfiy the type (function call, loop, etc.) of each block in the icicle plot.

Anteater allows programmers to manipulate the data through selections on the
plots and execution tree. This enables them to connect the two views and inspect
specific values in the visualization. Programmers then can reduce the data by filtering
their selections to exclude irrelevant information.

Last, Anteater allows programmers to facet their data by partitioning it using a
shared structure in the execution (such as a repeated function call or loop iterations)

or related values from the program (such as a related boolean variable).
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2.3.2 Characterizing Anteater’s System Design

Several taxonomies exists for characterizing program visualizations [85], [95], [100],
[111], [117]. While any of the taxonomies can apply to Anteater, we use the taxon-
omy from Maletic et al. [85] to describe it because we believe that it best characterizes
Anteater with respect to the systems goals. This taxonomy breaks program visualiza-
tions into 5 dimensions: Tasks, Audience, Target, Representation, and Medium. We

discuss each of these dimensions individually in the remainder of this section.

Tasks The task dimension, as specified by Maletic et al., defines why the visualization
is needed. Most standard debugging tools and methods lack support for global visual
representations of the data internal to programs. They rely on serial approaches of
inspecting a single instance of the data at a time. However, serial inspection of raw data
tasks people with the significant mental burden of building an internal representation
of an entire dataset [89]. Furthermore, because humans have a very limited ability to
recall prior values when serially inspecting data, this internal representation suffers from
inaccuracies caused by forgetting or misremembering past data. As Munzner stated,
“Vis allows people to offload internal cognition and memory usage to the perceptual
system” [89]. It does so by creating an external representation of the data that humans
can comprehend more easily.

Anteater aims to create a debugging system that shifts the perspective from debug-
ging programs through several serial views to take the previously described visualization
first perspective on debugging. It focuses on giving programmers an overview of the
data within their program first and then providing them tools that allow them to delve
into the details as desired. The “Task Analysis” section provides a more in depth

inspection of the goals of Anteater and the tasks necessary to support those goals.
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Audience The audience dimension defines who will use the visualization. Anteater
aims to help python programmers understand their programs and diagnose misbehav-
ior’s in the programs they are running. While our prototype currently supports the
visualization of program traces of a moderate size (around 225,000 recorded function
calls and variable assignments), we believe that the design of Anteater is appropriate

for general programming tasks in Python.

Target The target dimensions defines what aspects of the program are visualized.
Anteater creates a trace as the program executes. Anteater focuses on collecting internal
program values, such as variables and expressions, throughout the entire execution of
the program. Additionally, these traces capture the calling and looping structure of
the execution. The details of the tracing infrastructure of Anteater are discussed in the

section “Tracing Infrastructure and Data Organization”.

Representation This dimension defines how to convey the target information to the
user. Anteater leverages well understood visualizations of each type of data collected
to present the data to the programmer in an easily understandable way. It then pairs
these visualizations with interactions that allow people to filter down to areas of interest
in their program values and view details as desired. The visual design is discussed in

depth in the section “Anteater’s Visualization Design”.

Medium The medium dimension defines where this information is displayed. We

intend Anteater to be displayed in color on a laptop screen or an external monitor.

2.4 Task Analysis

In this section, we discuss Anteater’s goals. The original inspiration for our goals came

from Omnicode [70] and the Coz profiler [35]. We further refined our goals after ex-
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ploring additional related work, characterizing the problem with Munzer’s framework,
and reflecting on our own experiences with respect to program debugging and under-
standing. The final goals below were derived after several iterations of system design

and goal refinement.

When program-
mers write and execute programs, they have some expectation of how their program
should be behaving, e.g. what functions should be called and when. As a result, one
goal of debugging is to identify what is causing an execution to deviate from what the
programmer expected. To support this goal, debugging tools need to provide a view
of the execution structure (see Features column of Table 2.1). Furthermore, this goal
encompasses the subset of the search actions identified in the previous section that
correspond to understanding the execution structure of a program. For example, a
programmer may want to lookup a specific function call, locate an erroneous function
call, browse a specific area of the execution structure, or explore the overall structure

of the execution.

G2: Identifying the source of unexpected values and trends Similar to ,
programmers typically have a general ideas about what variable values they should
observe during the execution of a program and thus desire to identify the root cause of
unexpected values in the execution. To help programmers identify patterns and trends
in the values of a variable, tools need to provide views of variables over the entire exe-
cution of the program. This corresponds to the ”Single Variable, Whole Time” column
in Table 2.1. In addition, keeping these values in context of the execution structure,
allows programmers to isolate areas of interest in the execution. Whereas encom-
passes the subset of the search actions corresponding to understanding the execution

structure of a program, this goal encompasses those corresponding to understanding

the internal variable values of a program. For example, a programmer may want to
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lookup a specific instance of a variable, locate an erroneous variable calculation, browse
instances of variables at a particular point in the execution, or explore the overall trends

of a variable throughout the execution.

This goal encompasses a wide range of exploratory debugging and understanding tasks.
We designed it to be general enough cover any programming situation that did not fit
into the first two goals. For example, programmers are often tasked with understanding
code written by someone else. Typically, this is no easy task and requires a significant
amount of effort on the part of the programmer. Viewing the structure of the execution
along with trends of variables throughout the entire execution serves as a starting
point for understanding the behavior unfamiliar code. Similarly, programmers use well
known but complex analysis algorithms that they write but do not fully understand
how the algorithm operates. Understanding these algorithms is a difficult task that
requires effort similar to understanding code written by someone else. This goal aims
to encompass programming tasks like these. All debugging and understanding tools
attempt to support this goal and as a result, all views and features described in Table 2.1
support this goal. This goal encompasses the subset of the search actions corresponding
to understanding the general behavior of a program. This goal often corresponds to the

explore and browse actions where the target is not concretely defined.

Under the framework of Lam et al. [75], falls into the “Discover Observation”
category and and G2, fall into the “Identify Main Cause” category. From these

goals, we derived several sub-tasks required to support the goals.

T1: Inspect all instances of a variable or expression It is often useful to look
at all of the values that a variable or expression takes on to determine if it is behaving

as-expected and to identify any erroneous values (supporting (G2). Additionally, in an
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unfamiliar or complex program, it helps create a general understanding of the variables
behavior (supporting (:3). This task corresponds to the low-level actions summarize
(e.g. view the trends of a variable) and identify (e.g. inspect an erroneous value) as

described in the previous section.

T2: Identify what functions are called at runtime Often it is not clear from
the static source code which functions will execute and when. However, identifying
which functions are actually called during an execution is crucial for understanding
how a program is operating (supporting (:3) and identifying unexpected execution
behaviors (supporting (:1). Providing an overview of the execution (corresponding to
the summarize action) allows people to see which functions are called at runtime and

allows them to isolate misbehavior (corresponding to the identify action).

T3: Identify dependencies for a variable Understanding dependencies is crucial
when trying to understand the behavior of a program. Identifying how a value is
calculated, including the execution path required to complete the variable’s calculation,
allows programmers to better understand the underlying nature of the value in question
(supporting (:3). Such insight can lead to finding the cause of an unexpected value
(supporting G2). This task supports the identify action in relation to viewing the

dependencies of a specific instance of a variable.

T4: Identify interesting subsets of values Given a variable or expression, it is
important to be able to identify the subset of values that correspond to interesting
behavior. For example, if certain values indicate a failure in the program, they need to
be identified so the surrounding values can be examined to understand the cause of the

behavior. This task supports G2 and as well as the identify action.
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T5: Observe relationships between values When debugging a program, pro-
grammers often investigate relationships between variables (supporting the compare
action). For example, if variable x changes, how does variable y change? While these
relationships may not be explicitly defined by the code, i.e., y may not directly depend
on x, they often provide meaningful information to the programmer. Uncovering such

relationships contributes to program understanding (supporting (:3).

T6: Maintain context between runtime state and static source When trying
to debug and understand a program, maintaining context with the actual code is critical.
If the programmer is manually instrumenting print statements, they also must codify
contextual information to derive insight, e.g., representing the location of a variable’s

modification. This task supports (-1, G2, and

A system that supports all of these tasks needs to track the execution structure of the
program along with variable and expression values in the context of its execution. An
execution trace fits this need as it naturally tracks the execution structure of a program
and can be modified to also collect values. Once a system collects this data, it must
present it in a way that allows for easy navigation through the data while supporting the
defined tasks. We argue that visualization best way presents this information because it
is known for providing overviews and context, highlighting relationships, and facilitating
the filtering down to subsets of interesting information, all of which are needed to
support these tasks. Anteater takes a visualization approach to program debugging and
understanding that satisfies these goals through execution traces and visualizations.
Currently, Anteater deals solely with single-threaded programs but we expect that
this task analysis would need to be extended to satisfy our goals for multi-threaded

programs.
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2.5 Tracing Infrastructure and Data Organization

To support the goals and tasks defined in above, an execution trace with accompanying
variable and expression values must be collected. Anteater implements a tracer that
automatically instruments source code to collect its execution trace. Implemented in
Python, the tracer relies solely on the Abstract Syntax Trees (AST) to facilitate the
transformation of the source code. While Anteater currently only works with Python
programs, the same principles can be implemented in any language that has the ability
to transform source code in a similar way. After transforming the source code, Anteater
runs the program, generates the trace file, and organizes the data in a way that allows for

easy creation of interactive visualizations. Fig. 2.3 illustrates how the system operates.

2.5.1 Tracing Programs

This section goes into depth on part (a) and (b) of Fig. 2.3. First, it discusses how people
can specify traces through the Anteater front-end. Then, it discusses how Anteater

turns this trace specification in to program trace.

Specifying a Program Trace To fulfill T1 (inspect all instances of a variable or
expression), Anteater allows programmers to define which variables and expressions to
track, through interactions with the source code. Additionally, to eliminate unimpor-
tant functions form the trace, people may specify functions and libraries to exclude from
the trace. Together, these two pieces create a trace specification. This corresponds to
part (a) of Fig 2.3. Anteater also allows people to define additional custom expressions
associated with their chosen variables that it evaluates and records each time it records
the corresponding variable.

Anteater best supports numerical values but has limited support for strings and

boolean values. While it cannot directly visualize lists and matrices, information about
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Figure 2.4: An overview of how Anteater goes from source code to visualization. (A)
shows the initial source code. We are going to track the variable “val” After instrument-
ing the source code, as demonstrated in Fig. 2.3. The instrumented program creates
a trace cell as shown in (B). Anteater then puts the JSON into a SQL table as shown
in (C). From there, Anteater queries the table to select all points from “Tracked” that
have the name “val” and passes them to Anteater’s Vega-lite generator which generates
a Vega-lite specification (as shown in (D)) for the corresponding plot. Anteater then
renders the specification to create a scatterplot of those points over time (shown in

(E)).

either structure can be tracked using custom expressions (see section ”How to Handle
Objects”). Once the programmers complete the trace specification, Anteater passes it
to the tracer in the backend for processing.

Note, the tracer will only collect the variables and expressions defined in the trace
specification. We explicitly chose to do this because collecting the entirety of data
associated with every variable in the program leads to the collection of massive traces
filled with a significant amount of irrelevant/unnecessary data. Many variables residing
in code have little importance in describing the program’s behavior. Thus, Anteater
allows the user to select the important variables to track. This decision discussed more

in the Discussion section.

Anteater’s Tracer When a user chooses to create a trace, the Anteater back-end is
passed a trace specification containing a list of variables and expressions to track and
a list of functions and libraries to exclude from the trace. The tracer indexes through

these lists and determines the scope in which each item resides to ensure that it only
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tracks/excludes the specified items. For example, if two disjoint functions both define
variable x, the tracer will only track the one the user selected.

Once Anteater determines the scope of each item, the tracer uses the Python ast
library to parse the source code into its AST. It then performs a series of traversals of
the AST to collect information about the source code and transform the program to
trace the execution and desired values.

In the first traversal through the AST, no transformations occur. Rather, Anteater
collects information about functions, loops, and dependencies. For functions and loops,
it collects the lines at which the function definition or loop begins and ends. This in-
formation enables more detailed linking between visualizations and source code. For
dependencies, the tracer traverses through the code and, for each variable, stores func-
tions and variables on which it directly depends in the source text.

Once all of the static data has been retrieved from the source code, Anteater begins
transforming it. A second traversal through the AST transforms the code to isolate
all function calls from their respective expression statements and expand list compre-
hensions into for loops. Anteater pulls all function calls that do not stand alone out
of their expressions and assigns them to a temporary variable that replaces the call in
the original expression (e.g., x = 2 % f() becomes tempF = f(); x = 2 x tempF'). This
allows Anteater to easily capture when and in what order functions are called.

Next, the tracer performs the main transformations to insert the instrumentation
that collects the trace. As the tracer traverses the AST, it always pauses at assign-
ment, call, and loop nodes. When it reaches an assignment node, it checks the trace
specification to determine if the target variable needs to be tracked. If so, it inserts
new nodes into the AST that record the value of the variable after assignment.

When the tracer reaches a call node, it first checks if the trace specification excludes
the function. If not, the tracer wraps the call with AST nodes to record the entry into

and exit from the call. A simplified example of this transformation is shown in Fig. 2.3
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(c).

When the tracer reaches a loop, it creates a counter to track the iteration of that
loop and inserts new instrumentation to record the start of the loop. As it traverses
the body of the loop, any time the tracer creates a new record, it records the iteration
in which that record occurred. Tracking the iteration binds together groups of records
in the trace that occurred in the same part of the execution (i.e. records that occurred
in the same iteration).

Lastly, the tracer transforms the program to record expressions. Unlike variables,
expressions occur in a variety of AST nodes. As the tracer visits each node, it checks
if the line containing the node also contains a tracked expression. If it does, the tracer
isolates the expression from the line, assigns it to a temporary variable, and then re-
places the expression in the original line with the temporary variable. This ensures that
the expression only executes once and that the trace records its exact behavior during
the execution of the program.

Once Anteater completes the instrumentation, it compiles the AST into an exe-

cutable program, which generates the trace as it executes.

2.5.2 Data Organization

Fig 2.4 illustrates how we go from the source code to visualizations. After Anteater
instruments the source code, it runs the modified program and creates the trace file.
Anteater writes the raw trace as a simple JSON file, shown in Fig. 2.4 (B). This allows it
to easily capture the hierarchical structure of the execution as well as record data about
program blocks as attributes in the corresponding JSON block. Anteater then passes the
trace to the front-end. While convenient for collecting the trace, JSON is less convenient
and flexible for querying the trace which limits the range of possible visualizations
and interactions. To support more complex visualizations and interactions, Anteater

converts the JSON trace into a SQL database.
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Data Type Plot Type Query
Q Histogram SELECT
N Bar plot SELECT
QxQ Scatter SELECT, JOIN
QxQxQ... | Parallel Coordinates SELECT, JOIN
N, Q, QxQ | Small Multiples | SELECT, JOIN, SORT ON

Table 2.2: The above table shows the current visualizations supported and the SQL
queries used to create these visualizations. We use ”Q” for quantitative data and "N”
for nominal.

As shown on the right side of Fig. 2.3 (d), Anteater converts the JSON trace into
SQL tables. The primary two tables store (1) the attributes of the nodes in the execution
tree (the “block” table), and (2) the attributes of all instances of tracked variables and
values (the “tracked” table). Fig 2.4 B-C demonstrates how to convert form JSON into
the corresponding SQL tables.

Additional tables exist, such as “function_name” and “for_loop” that store additional
information about certain types of blocks. The “custom” table stores the values of
custom expressions that are collected alongside the variables and expressions selected
in the source code.

Converting the trace to SQL yields several advantages. First, querying becomes
much simpler. For basic visualizations, we now must simply write a SELECT statement
to gather all instances of a tracked variable. To filter instances, we can simply add
a WHERE clause to the SQL statement. Similarly, joining two variables becomes much
simpler through the use of JOIN. Table 2.2 shows a table of visualizations supported by
Anteater and the corresponding SQL query keywords used to collect the data.

Second, Anteater supports any visualization for which there exists a SQL query to
select the appropriate data. In other words, forming the proper query becomes the only
restriction to the range of possible visualizations. While the current implementation
only supports a few visualizations, we could easily extend it to support others.

The last advantage comes from the decoupling of the visualizations and the data
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representation. The specification of the visualizations does not inherently depend on
the representation of the data. A SQL query simply returns a list of datapoints for
Anteater to use in the visualization. Because of this, we easily adapted Anteater to use
Vega-Lite [105] specifications to generate visualizations. Furthermore, new visualiza-
tion implementations can be plugged in with minimal effort to adapt them to fit into

Anteater. This further increases the extensibility and flexibility of Anteater.

2.5.3 Generating Vega-lite Specifications

As mentioned previously, a SQL query simply returns a list of datapoints. Anteater
then simply needs to generate a Vega-lite specification appropriate for the specified data
(the final step of Fig. 2.3(d)). A snippet of a generated specification is shown in Fig. 2.4
(D) with the corresponding plot in (E). Leveraging the power of Vega-lite allowed us
to easily create clean, interactive visualizations that are customized to best present the

data selected by the programmer.

2.6 Anteater’s Visualization Design

Anteater presents a new way of exploring and interacting with program executions
helping users to gain a deeper understanding of the inner-workings of their programs
that they cannot get from traditional tools. In the previous section, we discussed
how Anteater creates the execution trace. Here, we describe the visualization design
of Anteater and the features that facilitate the exploration of the execution trace.
As we walk through the design, we will describe the features in context of a simple
Python program that runs a recursive Fibonacci function. In addition, we use Yi et
al.’s categories of interactions [132] to classify our interactions and further validate our
design. Anteater uses Vega-lite to generate all visualizations, with the exception of the

generalized context tree.
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Figure 2.5: An example of Anteater splitting the data by a structural element. Anteater
splits the data by instances of a for loop at line 167, which corresponds to iterations of
the loop at line 166 (the selected block in the generalized context tree). The plot shows
one boxplot per loop instance.
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2.6.1 Visualizing Program Data

Once the tracer returns the execution trace, Anteater generates interactive visualiza-
tions. Two types of visualizations are provided: a view of the execution structure, which
we call the generalized context tree, and a visualization of the variable values. For ease
of use, Anteater provides well understood visualizations of the program information but

can be easily extended to support more complex/custom visualizations.

Generalized Context Tree

The generalized context tree (GCT), shown on the right side of Fig. 2.2-A and in Fig.
2.2-B, provides an overview of the execution structure. The visualization has its origins
in flame graphs and icicle plots. We chose this type of visualization because it is well
known and understood for visualizing traces. In our setting, each rectangular block in
the plot represents one of three things: a function call, a loop, or a variable assignment.
The icicle plot shows the hierarchy so that, for a given block, everything that is within
that blocks bounds below it, is a child which means it executed within the code of the
parent block (i.e. in that call or loop iteration). For example, in Fig. 2.2-A, the block

7

in the second row labeled “10: val = ...” is the initial call into the Fibonacci function
and everything below that happens within that call. The generalized context tree can
be used to determine which functions executed and when, fulfilling T2 (identify which
functions are called at runtime).

As we move from left to right in the plot, we are increasing in time; everything to
the left of a block was fully executed before that block. This allows users to easily read
the visualization and understand when blocks are executed relative to other blocks.

The GCT highlights a single variable corresponding to the variable on the x-axis
of the plot. When the user assigns a variable to the x-axis, the GCT colors all blocks

in the tree corresponding to that variable (which reside at the leaf level) by the value
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of the corresponding instance. Positive values range from white (low) to purple (high),
while negative values range from white (least negative) to orange (most negative). In
Fig. 2.2-A, Anteater colors the leaf nodes representing the variable ”val” with varying
shades of purple. Deeper leaves are shaded much lighter, which indicates small values at
those instances; this corresponds to the deepest Fibonacci calls returning the smallest
values. Coloring blocks in this way shows the behavior of values in the context of
the whole execution. Every other variable or expression that appears in the trace still
appears in the generalized context tree but Anteater colors them gray to keep focus on
the selected variable.

Before creating the GCT, Anteater must organize the data into a hierarchy that
it then passes to the D3 library to generate the visualization. To organize the data
into the hierarchy, Anteater starts at the root block that represents the whole module
and queries the database for all of its child blocks. It then adds these blocks as its
children to the hierarchical data structure and repeats this process for each child block.

In essence, this re-builds the tree in a manner similar to depth first search.

Variable Value Plots

The second visualization provided by Anteater, is a plot of tracked variables. Similar to
when creating the trace specification, programmers add tracked variables and expres-
sions to the plot by right clicking and selecting to add it. Anteater queries the database
to retrieve the specified variables. When Anteater initially reads in the trace, Anteater
checks each tracked variable and expression to determine its type (quantitative or nom-
inal). Thus, when creating a plot, Anteater first checks the data types of each involved
variable before looking up the plot type appropriate for the selected variable(s) (based
on Table 2.2). Once Anteater determines the correct plot type, it begins generating the
Vega-lite specification. Initially, it creates the base layer that sets the mark for the plot

(bar, point, line, etc.) and plots the initial data. In this layer, Anteater performs any
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Figure 2.6: Debugging Gradient Descent with Anteater. In (A) it is immediately appar-
ent in both the generalized context tree and the histogram that there is a bug causing
NaN’s, shown in green in both the histogram and GCT (NaN means “Not A Number”,
special floating-point values that indicate numerical failures). In (B), we switch to the
scatterplot view to see how the values behave before they become NaN. The values are
mostly centered around zero before becoming an extremely small negative, then going
to infinity and becoming NaN. We suspect that the values centered around zero are
not actually zeros so we filter the values in the scatterplot to allow us to zoom in on
them and switch to a symmetric log scale, shown in (C). Now we see that the values
are oscillating which suggests the problem of exploding gradients caused by a training
rate that is too large. Fig. 2.7 shows the Anteater visualizations after correcting the
bug.

44



After Bug Fix

function
loop
34: x,x1 = grad_desc(2, 2) X
- .
1.97 1.99

15: while iterations > 0:

UH
———————

o
|,,° ° Split plots by ¥ Clear Filters Plot Options

Plot of x vs. timestamp

®
[
1877 _—

T T T T T T T T T T T 1
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011  0.012

timestamp

Figure 2.7: Debugging Gradient Descent with Anteater. The plot and generalized
context tree after we correct the bug from Fig. 2.6. To correct the bug, we reduce the
training rate and can see that the value quickly converges as expected.
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necessary filtering and transformations (e.g. aggregation for histograms and filtering
out non-numeric values in quantitative data such as "NaN” values). If quantitative
variables have non-numeric values Anteater will concatenate additional subplots (hor-
izontally or vertically depending on which variable contains the values) to show these
values. Vega-lite allows Anteater to sync the axes of the subplots with the main plot
in the base layer, as in Fig. 2.6 A and B. This builds the base visualization for the

specified variables.

2.6.2 Interacting with the Trace Visualizations

Anteater’s interactions are key in helping users get a better understanding of their
program. We organize our interactions based on Yi et al.’s categories of interaction:

Select, Explore, Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect.

Select and Connect Anteater provides interactions that connect related views in
the following way: interactions to link the generalized context tree and the plot view
(in both directions) and interactions to link the visualizations to the source code. Addi-
tionally, the interactions linking the generalized context tree to the plot view also serve
to select portions of the execution data that are of interest.

Anteater provides interactions on the plots and the GCT to link the two together.
When a user selects a block in the GCT, the values shown in the plot filter down to
include all values in the subtree rooted at the selected block. In addition, to provide
global context, the plot shows the values from the subtree rooted at the parent of
the selected block. As shown in the histogram in Fig. 2.9-B, Anteater colors the bar
representing the selected instance(s) blue while the coloring rest of the bars gray for
context. In the scatterplot, it colors the points representing selected instances while
leaving the rest gray. Anteater also provides linking from the plot back to the GCT.

In the histogram, selecting a bar highlights the corresponding blocks in the tree, as
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shown in Fig. 2.9-A. In the scatterplot, brushing over a set of points highlights the
corresponding blocks in the trees, as shown in Fig. 2.2-B where the red blocks in the
tree correspond to the brushed points. Anteater enables these selections by adding
specific parameters to the Vega-lite specification. These parameters specify the type of
selections available (e.g. brushing or clicking) and the visual effects of the selections (e.g.
changing color or opacity of unselected points). Furthermore, Vega-lite’s data listeners
allow Anteater to monitor these selections and update linked views accordingly. These
interactions support T4 - identify interesting subsets of values - by allowing the user to
pinpoint interesting values in the plots and locate them in the execution.
Additionally, when exploring the execution, it is important to connect back to the
source code to maintain the context of the execution. On its own, the generalized
context tree is fairly abstract. To provide necessary context, when the user selects a
block in the generalized context tree, the source code jumps to, and highlights, the
corresponding section of the code. If it corresponds to a function call whose definition
resides in the source file, it also highlights the corresponding function. This interaction,
paired with a preview of the corresponding source code on the blocks, supports T6 -
maintain context between runtime state and static source - by allowing users to navigate

the execution trace without forgetting their place in the source code.

Explore Anteater supports two “explore” interactions: faceting values into groups
and inspecting dependencies.

The first interaction, faceting values into groups, enables people to view distinct
subsets of a variable. Anteater provides grouping capabilities that allow the user to facet
the data into groups and create either a series of box and whisker plots on the same axes
(one for each group) or small multiples of plots. The data can be split on either a related
variable /expression from the trace (such as a boolean value) or a repeated structure in

the execution, such as a loop, where each instance of the structure contains multiple
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instances of the tracked variables/expressions. For example, in Fig. 2.5, Anteater splits
the plot on the outer loop and creates a box and whisker plot for each instance of the
inner loop.

The second “explore” interaction supports the inspection of dependencies. To sup-
port T3 (identify dependencies for a variable), Anteater determines what dependencies
could exist for any instance of a variable. To find all dependencies for a variable,
Anteater accesses the variables dependency list generated during tracing, and then, for
each dependency in that list, it accesses their dependency lists. This continues until
Anteater builds a comprehensive list of all possible dependencies.

After creating the list of dependencies, Anteater uses context from the execution
trace to eliminate some possibilities and present the remainder to the user. When a user
selects a block in the generalized context tree that represents a variable, Anteater checks
2 sets of blocks: (1) any siblings of the selected block that were fully executed before it
and (2) the siblings of all ancestor blocks of the selected block that were fully executed
prior to the selected block. From these sets of block, Anteater finds any blocks that are
on the list of possible dependencies. For any block that is on the list, it is highlighted
in the generalized context tree to show the user the user on which parts of the context
tree that selected block depends. This allows the user to quickly get an idea of which
entities may contribute to that specific instance. In Fig. 2.2-B, the selected instance of

“val” depends on the prior two calls to “fib”.

Reconfigure : Anteater supports reconfiguration by allowing users to add multiple
variables to a plot (supporting T5 - observe relationships between values). If the vari-
ables are compatible, Anteater plots them against each other in either a scatterplot
or parallel coordinates (depending on the number of variables), allowing the user to
observe their relationship. Compatible variables share a common ancestor and have

1-1 instances within that ancestor. Anteater provides an options menu that allows
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programmers to swap or change the scales on axes using the "Plot Options” menu.

Encode Depending on the type of data presented, Anteater allows people to encode
the data in a multiple ways. People can click on the icons above the plot to switch
between the different plot types available for that datatype. Additionally, Anteater

gives them controls to rearrange the axes of the plots as well as change the scales.

Filter Anteater supports three types of filter interactions on the plot and the gen-
eralized context tree to help people filter out unimportant information and emphasize
important parts of the execution, which helps support T4 (identify interesting subsets
of values). The first type of filtering was mentioned above where clicking on deeper
nodes in the context tree filters the value plots. Through this interaction, users can
filter down the plot to interesting subsets of the data.

In the scatterplot, users can brush over a subset of points, right click, and select to
filter out the values not in their brush. Anteater then removes all other points from the
plot, effectively zooming in on selected points, and grays out any block not on the path
to a shown point. Examples of this can be seen in Fig. 2.6-C and Fig. 2.9-C. Similarly,
in a bar plot or histogram, users can select bars and filter down to the corresponding
values in the same manner.

One last way users can filter the visualization is by hiding parts of the generalized
context tree. Right clicking on a block in the tree will expand the block to take up the
entire width of the interface, increasing the size of all of its children and thus making
them easier to see. However, in doing this, users might lose context of where they
are exploring with respect to the execution. To retain this context, we add a smaller,
grayscale version of the generalized context tree with a highlighter bar over it. When
the user zooms in on a block, the highlighter narrows to indicate its place in the overall
context tree. It also highlights the selected block in yellow, as well as any other blocks

that are highlighted in the generalized context tree (from dependencies and brushed
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values). This allows users to see highlighted blocks even if they are outside of the
visible portion of the generalized context tree. In Fig. 2.5, we zoomed in on the loop
at line 166, but we see our location with respect to the whole generalized context tree

in the context bar.

2.6.3 How to Handle Objects

While Anteater will not directly collect objects, it provides a way for users to collect the
information that interests them from the object. To do this, the user locates the place
in the program where they wish to inspect the object. At this point, they choose to
create a custom expression for Anteater to record that accesses the data in the object
that interests them. Each time the execution reaches this point, Anteater will evaluate
and record the value of the expression. This enables users to indirectly gather all of
the information from objects that they wish to inspect without directly collecting the
entire object.

The central challenges with collecting entire objects are the detection of every mod-
ification to the object and visualizing all information within an object. The first chal-
lenge would require Anteater to detect every time the object is mutated and record the
new state of the object. Not only is the detection a difficult task, but the collection of
all mutations of the object will inevitably lead to unmanageably large trace files. The
second challenge would require additional input from the user on how to design the
visualization of the object given the information it contains. Rather than have users
create their own visualizations, Anteater has them select the data they want to visualize

from objects ahead of time and then creates the visualizations for them.
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2.7 Evaluation

We evaluated the efficacy of Anteater’s framework through a preliminary user study, a

comparative study and a series ofusage scenarios.

2.7.1 Preliminary Pair Analytics User Study

User affordances offered by and the development status of a visualization prototype are
key factors to steer the design of a user evaluation study [41]. In the case of Anteater, we
do not intend to validate the scalability or usability of its interface and architecture (see
Discussion). Similarly, we do not evaluate users ability to complete the tasks defined
earlier using Anteater. Rather, we found it more appropriate to validate Anteater’s
visualization first approach to debugging and the exploration processes that Anteater
facilitates. In particular, we wanted to observe the use and utility of global views of
program values offered by Anteater in the program exploration process. Hence, we
chose pair analytics [6] an appropriate user evaluation protocol.

Pair analytics offers a “think-aloud” protocol that helps generate verbal data by
capturing the natural interaction between study participants and the proctor using the
visualization interface as a communication anchor. Using the pair analytics method, a
team is formed between a study proctor (or a visualization expert) who helps navigate
Anteater and a subject matter expert who drives the exploration/debugging efforts.

We chose this evaluation over other methods for multiple reasons. First, this ap-
proach allows the subject matter expert to focus less on the nuances of the visual-
ization interface (e.g., interaction types, loading data, etc) and more on exploration
and question-answering processes. Other methods require participants to thoroughly
learn an entirely new system before completing any tasks. The overhead of learning
the nuances of a new system requires a significantly longer study session. Additionally,

Anteater is a prototype implementation. Having a proctor to assist in the navigation
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of the tool provides immediate assistance on how to proceed in the event that a sys-
tem problem arises in the prototype. Second, a comparative study where experienced
programmers complete debugging tasks with Anteater as well as with existing methods
not only requires a significant overhead for learning the new system but also must miti-
gate the bias introduced by participants predisposition towards their current debugging
practices. We discuss this more in the next study.

The exploratory nature of this study combined with the pair analytics protocol
allows us to mitigate the bias of a participants predisposition to their current practices
and reduce the overhead of learning and using a prototype system while still evaluating

the utility of Anteater in exploratory debugging/understanding tasks.

Methodology

Participants Participants were recruited from a graduate level “Principles of Ma-
chine Learning” course. All participants are actively involved in computer science
research, use Python as their primary programming language, and consider themselves
experts in Python. We believe that the debugging and understanding tasks of programs
written by graduate students in an upper level machine learning course or their research
are comparable to those in real world data analysis programs.

We recruited a total of 5 participants from the class, which had a total of 20 students.
However, only 3 of the studies were carried out to completion. We discarded one of
these studies because the participant provided a program with a known bug that they
thought might be interesting to re-discover with Anteater. While the subject matter
expert’s program was appropriate for the user study, we thought the prior knowledge of
the participant would bias the study’s outcome. As a result, we promoted this program
to a usage scenario and discuss it in a later section. We discarded another study because
the programs presented by the participant were not a good fit for the study. They do,

however, highlight some of the limitations of Anteater and are discussed in more detail
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later.

Study Session Process For each study, we recorded screen capture data along with
audio recordings of each interview. Participants were asked to bring their own program
to the study. All participants brought a program that performs some form of data
analysis. Allowing them to choose their program helped alleviated some of the mental
overhead of the study by not requiring them to learn a new program, along with a
new debugging tool. Furthermore, this kept participants in their domain which enabled
them to perform more meaningful explorations of their programs with Anteater.

Participants engaged in two sessions with the proctor. Due to the current policies
in place in the U.S. at the time the study was conducted, all sessions were held online
rather than in person, as would typically be done. Anteater’s primary developer served
as the study proctor to assist participants with navigating the nuances of Anteater and
prompting them with questions to describe their exploration process.

The first session, was a brief meeting to introduce the participant to Anteater and
discuss the participants program. The proctor and participants discussed what the
participant wanted to see from within their program. After the first session, the proctor
ensured that the program was suitable for the study and that the participant could view
what they desired by testing it in Anteater. If the program was suitable, participants
were asked to meet for a subsequent session.

In the second session, the proctor walked participants through the various features
of Anteater. Afterwards, participants began exploring their programs with Anteater.
The study gave participants free reign of their exploration, they were not given specific
tasks to accomplish. In doing this, their behavior with Anteater exemplified more
precisely how they would use a system like Anteater in their actual program debugging
and understanding practices.

During the second session, the proctor served two primary purposes. First, to mit-
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igate the overhead of learning a new system, the proctor assisted participants in navi-
gating the features of the tool. Prompted by verbal cues from participants, the proctor
would remind participants how to accomplish tasks within Anteater. Second, akin to
other pair analytics evaluation studies, the proctor freely asked questions to promote
exploratory thinking. In effect, participants’ answering of such questions helped distill
internal cognitive processes that were qualitatively analyzed.

For the participants who completed the study, the second session lasted between
60 and 90 minutes. Approximately the first 30 minutes of each session was spent
introducing the subject matter experts to Anteater and getting Anteater set up to run

properly on their machines.

Results

From this study, we found that, even in its imperfect prototype state, Anteater was
useful to participants for debugging and achieving a better understanding of their pro-
grams. All participants were able to learn something new about their program that they
previously had not understood. For the sake of confidentiality, we cannot give specifics
about the programs used by participants. However, we try to give some context in the
form of general concepts found in data analysis programs.

The first participant (P1) knew a bug existed in their program causing it to run
incorrectly, but had yet to find it. With the proctor’s guidance, P1 leveraged Anteater to
identify and fix the bug (which aligns with G2 above). Through the use of the timeline
plot and the ability to track custom expressions on more complex data structures (which
corresponds to T1 - track a variable or expression), P1 found the bug, fixed it, and then
verified that the revised program ran properly. During the exploration process, P1
discovered that there was something unusual about the training dataset, denoted as
the whole dataset, which is split into left and right, vital to the proper execution of

the program. P1 correctly noticed the problem since “the right dataset and the [whole]
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dataset cannot be the same” even though the scatter plot showed them as identical
(T5 - observe relationships between values). Upon further investigation of the captured
values in each dataset, P1 explained that the “right dataset ... points to [the] class
dataset” which causes them to overwrite the whole training set with only the right one.
After modifying the code, a new trace was run and P1 validated the proper behavior of
the code. After being asked if they were “able to gain new insight into [their] program
using Anteater,” P1 answered that “the scatter graph and also the tracking values
[were] very helpful.”

The other two participants (P2 and P3) presented more open-ended cases. P2 and
P3 did not have known bugs, but rather non-trivial data analysis programs whose
execution was not fully understood (which corresponds to ). In both cases, the
timeline view of certain variables over time was crucial. P2 heavily relied on the timeline
and filtering capabilities of Anteater to verify that their program was converging as
expected. P2 also used the timeline and filtering feature to inspect if their program was
reaching the extremes of its search space. Using the visualizations provided by Anteater,
P2 discovered that the program did not search the entire space in one direction and
searched beyond the bounds in the other direction. After completing their exploration,
P2 commented that understanding “why the values are so far off from the [search space]
is a good next thing to look at.”

P3 also heavily relied on the timeline view. They used it to understand the behavior
of a set of weights in their analysis program. Before their use of Anteater, P3 had
little idea of how the weights behaved throughout their program’s execution. Anteater
allowed them to track and visualize the weights over time to see how they evolved as
the program ran. After they inspected the weights, the participant commented that
“[Anteater| completely helped [them] understand sort of the underlying domain thing
of what was going on with the weights.” P3 further explained that Anteater was able to

show that the program “is converging on one particular feature as an important weight
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and the rest [are seen as| super unimportant.” Through the use of Anteater, P3 was
able to understand the behavior of the weights relative to the domain for which the
program addressed, specifically through the use of the visualizations. The ability to
visualize the variables over time was key to P3 understanding this behavior.

We believe our observations in this preliminary study provide promising evidence
towards the utility of a visualization first approach to exploratory program debugging
and understanding. P2 and P3 both performed exploratory tasks for understanding
their programs and heavily relied on the global plots of values from within their pro-
gram and interactions with those plots to improve their understanding of the programs
behavior. In a post exploration interview, all participants indicate that they were able
to gain new insight into their programs: P1 by finding their bug and P2 and P3 through
understanding the behavior of certain values. Similarly, all participants expressed that,
if a polished and optimized version were available, they would like to use a system like
Anteater for future programming tasks.

As mentioned earlier, we discarded one evaluation study, because the programs
provided were not ideally suited for the objective of the evaluation. The participant
initially brought a large, machine learning program that took approximately a week to
run. This program was not a good fit since we do not aim to study the interaction
between trace size and applicability of our approach, but rather the utility of our
approach to real Python programmers. A program that takes a week to run will generate
a trace too large to handle by the current implementation of Anteater. Admittedly, this
does limit the generalizability of Anteater, but we consider the study of how to scale a
system like Anteater for future work. The participant then provided several small-scale
programs that we were also not ideally fit for the study. The first of the programs
was a small multi-threaded program. However, Anteater does not currently support
multithreading. The other two programs were linear programs (no loops) with only 20-

40 function calls and variable assignments where the code was broken into several small,
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independent parts. These programs are similar to those found in an introductory CS
course. This study aimed to use programs similar to those that would be found in a real
data analysis setting. The small-scale programs were simply not sufficiently realistic
for the study. As a result, rather than asking them to provide additional programs, we

omitted their case from the study.

Threats to Validity

Because our sample size was small, the results, while promising, can only be considered
preliminary. We designed the study to keep participants in their domains as much as
possible to preserve the ecological validity of the study. In doing so, we could get deeper
insights into users exploration processes and the results would better reflect real world
utility of Anteater’s design. However, a full scale study to further validate the design
and utility of Anteater needs to be conducted in future work.

In addition, the pair analytics protocol could potentially introduce bias into the
study if the proctor becomes too heavy handed in driving the exploration. In this
study, the goal of the proctor is not to drive the exploration, but rather to aid the
user in understanding the nuances of the system. Their primary role was to observe the
participants as they explored their programs, point them to the features of Anteater that
would help them answer their questions, and prompt them with additional questions

to provoke thought about the findings presented by Anteater.

2.7.2 Comparative Evaluation with an IDE

Our preliminary study aimed at evaluating how programmers use Anteater in their
exploratory debugging and understanding tasks. We found that the approach of pro-
viding global views of program values at the forefront was useful for our participants in
completing exploratory program understanding tasks. In a second study, we attempt

to compare how participants debug with Anteater vs a more traditional IDE debugger.
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In this study, we asked people to complete two debugging tasks, one with Anteater
and one with an IDE. We then prompted them with questions about their experiences.
The goal of this study was not to evaluate how efficiently or accurately participants de-
bugged programs. Rather, we aimed to evaluate how people interact with each system
and contrast their experiences. However, over the course of the study we encountered
several challenges to conducting an evaluation of this type. These will be discussed

more in the following sections.

Methodology

Using recent technology that brings the Python library into the browser [97], we de-
veloped a version of Anteater that runs entirely in the browser and does not require a
python server back-end as in the prior version. Thus, in contrast to our preliminary
study, participants were able to complete this study entirely in the browser, without
any assistance from a proctor or system expert. Participants were asked to complete 2

debugging tasks: one with Anteater and one with an online Python IDE.

Participants Throughout the course of the study, we conducted two rounds of re-
cruiting participants.

The first round of recruiting was conducted by advertising the study to relevant
groups of research and data analysis professionals. As an incentive for completing the
study, participants were entered into a drawing for a $100 Amazon giftcard. We chose
this method of recruitment because we believed that these groups of professionals would
have the experience to provide focused and meaningful feedback. We kept the study
open for 4 weeks. However, we were only able to recruit 4 participants in this first
round. As a result we conducted a second round of recruitment.

In the second round of recruiting, we recruited participants through the recruitment

service Prolific. To ensure that our participants had the proper experience, Prolifc al-
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lowed us to specify that participants must have programming experience. Additionally,
in the description of the study, we specified that they must have Python programming
experience. However, despite this specification, several participants indicated that they
were novices with Python, which may have impacted their ability to complete the given
debugging tasks. These participants tended to provide the least meaningful responses.
Through prolific, we recruited 9 participants. Participants were paid $10/hour to com-
plete the study.

Of the 13 participants, 4 rated themselves as Python novices (have never used
Python before or are currently learning it), 6 as intermediate (use Python sometimes,
but not as a primary language), and 4 as experts (use Python regularly as a primary
language).

Participants were asked to provide the purpose of their primary programming ac-
tivities. 4 of the participants indicated that they primarily program for coursework, 7
indicated that the program for software development and 2 indicated that they program
for data science/analysis.

Participants were also asked about their current debugging practices. 8 participants
indicated that print statements were part of their debugging process, 8 use breakpoint
debuggers, and 6 participants use a mix of the two. 3 participants did not provide

descriptive responses.

Study Setup During recruitment, we gave participants a link to a webpage describing
the study purpose and format. If participants chose to start the study, they were taken
to a Google form to where they were they were shown an instructional video on how
to use Anteater and then given two debugging tasks to complete, one with Anteater
and one with an IDE. Participants were asked to debug the program either until they
found the bug or until 10 minutes lapsed. We wanted participants to try to debug the

program but, in the event that they could not find the bug, we did not want to ask
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them to spend more than 10 minutes trying. After each debugging task, participants
were asked a series of questions about their experiences. Upon completing both tasks,
they were asked a series of questions to compare their experiences and evaluate the

design of Anteater.

Debugging Tasks The study asked participants to complete two debugging tasks.
Both tasks involved computing the number of polling places per capita for every state in
the US from a dataset containing the population and number of polling places for each
county in the country. One of the debugging tasks (D1) generated erroneous (negative)
values due to an off by one error when indexing a list that separated each state in the
data by inserting a value of -999. The second debugging task (D1) generated similarly
erroneous values due to an unclean data file that represented missing values with -999.
Participants were presented the two tasks in random order and each task was randomly

paired with either Anteater or the IDE.

Results

Overall, the reception of Anteater was generally positive, especially since this was par-
ticipants first exposure to the system.

Of the 13 participants, using either tool, only 5 were able to confidently find D1 (4
were unsure and 5 did not believe they found it) and only 2 were able to confidently find
D2 (7 were unsure and 4 did not believe they found it). This indicates that the bugs we
introduced, while seemingly simple, were likely too complex for this type of study. This
exemplifies the first challenge we encountered in this study: introducing sufficiently
small but realistic and meaningful bugs that are identifiable in a short period of time.
We carefully developed these bugs and tested them in a pilot study to ensure that they
were not too complex. However, despite this, it seems our bugs were still to complex.

Additionally, several participants cited that the recommended time limit of 10 min-
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utes for each task was not enough to learn Anteater and complete the debugging task.
One participant noted “I felt like anteater was aiming towards a feature I would find
useful, but also only having 10 minutes of time with it, it certainly wasn’t effortless
to figure out and I suspect I missed some possible chances to take better advantage of
1t.”. This highlights the second challenge we encountered: overcoming the overhead of
teaching participants an entirely new system while still keeping the study a reasonable
length. Most participants took at least an hour to complete the study with the 10
minute time limit. Given the offered compensation, we did not feel that would could
ask for more time than that. However, it seems that this was not enough time for
participants to learn the nuances of the system.

After completing their debugging tasks, around half of the participants (7 out of 13)
indicated that they would prefer a production ready version of a system like Anteater
over an IDE. One participant cited “Anteater seems like it would be more effective for
the targeted debugging style that I tend to follow, i.e. focus on a few specific variables or
expressions, and investigate them deeply (and being able to do it visually isn’t something
supported in anything ['ve seen!), as opposed to the way the IDE just gives me cluttered
lists of numbers for everything, even if I already know they’re not important.” Another
participant cite that Anteater “remowves the careless of skipping the thing that we wanted
to find (odd values)” that happens when stepping in IDE debuggers.

Of the 6 who preferred traditional IDE’s, 4 of them cited that they preferred the
IDE and print statement debugging simply because they are accustomed to it. One
participant cited “I'm just more used to the traditional IDE, it’s debugging paradigm
makes sense in my head. Anteater introduces a whole new paradigm of debugging, which
I could imagine to be useful, but I'm just not used to it”. Another stated that Anteater
“provides a lot more information about what’s happening with the problem, but I think it
does not replace the phase of using convenient prints and proper testing to check what’s

exactly the problem.”. This exemplifies one of the largest challenges that we encountered
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num_intersections

Figure 2.8: Using Anteater to compare two runs of gradient descent that should max-
imize the minimum crossing angle while minimizing edge crossings. The generalized
context trees in (A) show that the number of intersections rapidly decreases (the color
changes from dark purple to white) while the minimum angle increases. The scatterplot
shows that the descent spends its first few steps at a bad solution and takes approx-
imately three big steps before converging on a good solution. In contrast, in (B) the
number of intersections increases throughout the descent while the minimum angle de-
creases. The scatterplot shows that, in general, as the number of intersections grows,
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Figure 2.9: (A) shows how we can use the bar plot to find where the barrier node occurs
in the execution plot. (B) shows the weights of the paths to the barrier node calculated
in the program. We see that none of them are 5, as we expect from looking at the MPI
call graph. (C) shows the data used to calculate the path weight that should include
the edge of weight 5. We see that the data does include this edge but the algorithm
does not look at it. For more details, refer to the supplemental video.

during this evaluation: overcoming experienced programmers predisposition to their
current debugging practices. One participant strongly stated that “I find prints the
way of God”. Several participants felt that Anteater would be useful but they did not
want to change their current debugging practices. However, two of these participants
commented that they think the features of Anteater would be useful if integrated into an
IDE. One participant stated ‘ ‘The best combination would be to integrate Anteater in a
classical IDE in order to have the best of both worlds”. We found this a very encouraging
comment for validating Anteater’s visualization first approach to debugging and will

explore this possibility in future work.

Threats to Validity

While the first round of targeted recruitment produced more meaningful results, there
is the potential for bias due to the participants potential familiarity with the authors.
Although the study was anonymous, we recruited participants from groups with which

the authors are affiliated. It is possible that participants were more generous with their
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responses than they would have been if they did not know the authors but we have no
way of detecting this.

In the second round of recruiting, we were unable to properly screen participants
through Prolific. In order to maintain the validity of the study, we did not modify
the protocol when extending the recruitment to Prolific. However, it seems that the
study would have benefited from additional efforts to screen participants Python and
professional experience. In Prolific, we were only able to specify that participants have
programming experience. However, Python experience was important for the study.
One participant was unable to complete either task, citing that both tools were not

accessible, possibly due to the fact that they were a novice in Python.

2.7.3 Usage Scenarios

Here, we present several, real-world scenarios, showcasing how Anteater derives insight
into debugging and program understanding. These scenarios were developed on real

programs through the author’s debugging efforts using Anteater.

Gradient Descent

The first usage scenario we present inspects a program performing gradient descent.
This program was collected from a question on Stack Overflow [56]. The programmer
struggled to figure out why the resulting values of the variables “z” and “x1” were
NaNs. We will walk through how to use Anteater to understand the bug and correct
it.

First, we run the program with Anteater to track one of the misbehaving variables,
“x.” Fig. 2.6-A shows the resulting GCT and histogram. The histogram shows that
much of the descent generates NaNs (the green bar).

As a natural next step, we look at these values over time. We switch the plot type to

“scatterplot” which shows a plot of the variable “z” over time, shown in Fig. 2.6-B. Now,
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# # # Original Instrumented Trace

Program Tracked | # Lines | Recorded Recorded Execution | Execution Size
Variables Calls Assignments| Time (s) Time (s) (MB)
Gradient Descent 5 36 402 801 0.0041 0.0691 0.3098
Longest Weighted Path 3 199 149 55 0.0023 0.0343 0.2351
Recursive Fibonacci 1 11 150,049 75,024 0.0292 5.8952 116.2

Table 2.3: Trace information and execution impact for traces of three of the programs
discussed in this chpater. The trace size and performance impact depends on the amount
of information recorded in the trace

we clearly see that the value of “x” stays around zero, before becoming a very small
negative, then going to infinity after which it reaches the NaNs. However, something
strange happens where the value stays around zero and then suddenly becomes a very
small negative. To investigate this, we filter the values to show only those points staying
close to zero. We also switch to a symmetric log scale because we suspect that the values
may not actually lie that close to zero. Fig. 2.6-C shows the resulting visualizations.
We see that the value oscillates between increasingly large positives and negatives until
it reaches infinity.

Now that we know the problem, we try to fix it. The oscillating values suggest
that the gradient is exploding due to a training rate that is too large. In Fig. 2.7,
after lowering the training rate and re-running the trace, the value quickly converges,
as expected.

(193]

Using Anteater, we quickly and easily track the variable “z” and see its behavior
throughout the execution. In a traditional debugger, detecting this behavior requires
stepping through several iterations to view the values. After lowering the training rate,

we repeat this process to determine if that fixed the problem. This involves significantly

more interaction with the debugger than when using Anteater.

Graph Edge Crossing Angle Maximization

In this usage scenario, we investigate a program that tries to balance the number of

edge crossings in a graph with the size of the minimum crossing angle. The program
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searches for the layout that minimizes the number of edge crossings while maximizing
the size of the minimum crossing angle. In this usage scenario, we inspect the stability
of the gradient descent method on this problem.

To inspect the stability, we ran the gradient descent multiple times, tracking the
minimum angle and number of intersections at each iteration of the gradient descent.
We found that in most cases, the gradient descent returns a good solution, as demon-
strated in Fig. 2.8-A, where it immediately begins moving toward a good solution and
never turns back. However, instances occur, as shown in Fig. 2.8-B, where the gradi-
ent descent starts moving towards a bad solution, and never recovers. Therefore, we
can conclude that although the majority of the time it produces a good solution, this

method suffers from stability issues.

Longest Weighted Path Calculation

This usage scenario was presented to us by a prospective participant in the user study.
While the program was not a good fit for the study, because the participant already
knew where the bug was, it presents a good example of the utility of Anteater on real
problems. This program aims to find the critical path, i.e., the longest weighted path,
from the “Init” to “Finalize” nodes in an MPI call graph. It uses the networkx library
to build a multiDAG and calculate the longest (weighted) path. We were given this
program with the knowledge that this bug existed and which methods were affected
but no other information on how to fix it. We then found and fixed the bug using only
Anteater. Below, we explain how we found the bug.

To begin, we loaded the program and data files into Anteater. We know from
inspecting the test graph manually that the algorithm overlooks one of the edges (of
weight 5) from the “Init” node into the “Barrier” node. To build the longest path, the
algorithm topologically sorts the nodes and iterates over them. For each node, it iterates

over all of the predecessor nodes. To find the bug, we first need to find where the barrier
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node occurs. We do this by collecting the node label in each iteration. Inspecting the
node labels in the bar plot, as shown in Fig 2.9-A, shows us the point in the execution
tree where the loop reaches the “barrier” node. Once we find the barrier node, we
select it to view the other values in that specific iteration. We then switch variables to
look at the path weights for each predecessor, as shown in Fig. 2.9-B. We see (from the
x-axis of the barplot) that none of the path weights reach 5, which indicates that the
algorithm misses the edge of weight 5 into the “Barrier” node. Next, we look at the
data used to calculate the path weights. We notice that one of the “Init” predecessors
has two weights associated with it, as shown in the filtered bar in Fig. 2.9-C. There are
two keys in the dictionary, one for each edge from “Init” to “Barrier”. Looking back at
the algorithm, we see that it only looks at the first key which causes it to miss the edge
of weight 5 and report an incorrect longest weighted path. To fix this, we simply find
the edge with the highest weight over all of the edges from the predecessor to current

node.

2.8 Discussion and Limitations

Omnicode vs. Anteater While Omnicode and Anteater both intend to help pro-
grammers debug and understand their programs, the two systems differ in their target
audience. Omnicode aims to help novice users create mental-models to reason about
their program’s execution and debug unexpected behavior. The size and complexity of
programs it needs to support for this audience is quite small. Thus, Omnicode only
supports programs of around 10 variables and 100 execution steps. Anteater aims to
help programmers in general. Therefore it needs to support different types of programs.

While Anteater cannot support large scale software-systems as they produce an un-
manageable amount of data, it can support much larger programs than those written by

novices, such as those programs written by data scientists. Anteater’s ability to support
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a program largely depends on the number of function calls and variable assignments
that are recorded in the trace. We do not know the exact limits of these parameters (as
they are very interdependent) but know that Anteater certainly supports programs with
up to 225,000 function calls and variable assignments. Each function calls and variable
assignment is comparable an execution step as described by Omnicode. Thus, in con-
trast to Omnicode which supports programs of around 100 execution steps, Anteater
can support programs of at least 225,000 comparable steps.

Most of the differences between Omnicode and Anteater stem from the fact that
they are geared toward different audiences. Omnicode supports a live programming
environment because it targets small programs whereas a static environment makes
more sense for Anteater. Similarly, Omnicode tracks every variable in the program

which is infeasible for the larger programs Anteater supports.

Goal 3 As mentioned earlier, ‘s serves as a catch all for debugging tasks that
do not fit into the first two goals. We acknowledge that a different, more specific,
version of may exist that, when evaluated, would allow us to learn more specific
information about how programmers use Anteater. However, keeping this goal general
allowed us to support any exploratory tasks presented to us by potential participants
in the preliminary study. This study focused more on observing how people would use
Anteater to validate its design rather than evaluating their ability to complete tasks

with Anteater.

Choosing what to track As stated earlier, Anteater only collects the variables and
expressions that the programmer specifies. We explicitly chose to do this because it
reduces the amount of unnecessary information presented to the programmer. However,
in some cases, such as when a programmer does not quite know what variable contains
the bug, people may want suggestions of variables to inspect or they may want to

inspect all variables. The problem of automatically suggesting variables and efficiently

68



tracing all program variables remains for future work. One possible approach could be
to still have the programmer specify variables, but then automatically collect all values

that the variables depend on.

Limitations Anteater will not scale to programs the generate large traces. Such pro-
grams typically make many calls or assign to tracked variables many times. In these
programs, the traces become too large and the visualizations unreadable. Table 2.3
shows the performance impact for several programs traced with Anteater. Research
exists on collecting the entire trace of large programs [94]; future work is needed to
evaluate if Anteater works well with this method. We note that our visualizations
operate on relational data, and there is a growing number of techniques to support
interactive visualizations on large relational datasets [54], [87]. A full investigation of
their impact on program visualization, however, is out of present scope. In addition,
Anteater works best with numerical data and has limited support for other datatypes.
While it can present numbers, strings, and booleans, it does not support compound
objects directly. Information about variables of these datatypes can still be visual-
ized through the use of custom expressions, but we leave first-class support for more
datatypes for future work. Finally, Anteater assumes a sequential programming model
and does not support parallel programs. Work exists in automatic tracing of parallel
programs in the traditional sense (without values) but applying and extending these

traces to Anteater is left for future work.
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CHAPTER 3

TRACE DIFFING

3.1 Introduction

In the previous chapter, we introduced Anteater. Anteater supports the exploratory
debugging of single instances of a program’s execution. However, people commonly per-
form comparative debugging tasks where they run the program, evaluate the program
execution values, make a small change, re-run the program, and re-evaluate the exe-
cution values to understand the effects of the change on the program. Several studies
of debugging strategies and processes identify strategies that employ this comparative
process [46], [60], [127]. For example, a study of debugging processes found that people
often use comparative debugging methods at multiple stages of the debugging including
“determining the problem” and “repairing the error” [127] . In “determining the prob-
lem”, people use it to compare correct outputs with incorrect outputs. When “repairing
the error”, people use it to confirm the effects of their repair. ProgDiff extends Anteater
to support the comparison of two program executions to support these strategies.
Current practices do not adequately support comparative debugging and under-
standing tasks. They either require the inspection of simultaneous instances of the
debugging method or require people adequately remember the values from the initial
execution. In print statement debugging, people must compare simultaneous printouts.
Not only does comparing simultaneous printouts still suffer from the problem of serial
inspection (as described in the previous chapter), but it suffers an additional problem
of requiring people to make many pairwise comparisons and build those comparisons
into an overall view of the changes in the data. We know that building mental repre-
sentations of data causes significant mental and are often not an accurate view of the
data [89]. Similarly, to fully compare program executions with a step-through debug-

ger, people must step through simultaneous instances of the debugger, one on the new
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version and one on the old. Just like with print debugging, simultaneous inspection of
individual pairs of values may not help people build a faithful mental view of the data.

Anteater also suffers this same problem. For example, Fig. 3.1 shows the visualiza-
tions from the original version of Anteater. . When comparing these views in multiple
instances, or viewing them one after the other in isolation, it may not be immediately
obvious that the program change had any effect on the tracked value. As a result,
debugging methods need to support the direct comparison of consecutive program ex-
ecutions.

ProgDiff creates comparative visualizations to illustrate the effects of source code
changes on program values. It extends the tracing infrastructure of Anteater to find
the differences between two consecutive program traces. Rather than requiring people
to contrast two instances of their debugging methods, ProgDiff provides a single view
to illustrate the effects of source code change. Fig. 3.2 presents an overview of ProgDiff,
using the same program from Fig. 3.1. Using ProgDiff, we can clearly see the differences
between the two executions. From the GCT, we see that the modification deleted some
iterations from the first function call and added some to the second. The scatterplot
shows us how both versions start the same, but then the modified version stops iterating
in the first function call earlier than the original version. It then enters the second
function call where it starts iterating at a lower initial value than the original version

but it iterates longer than the original version.

3.2 Related Work

Source Code Diffing Several tools exists for diffing source code. The Unix diff
utility and Git diff command support the diffing of two textual source files by finding
the minimum number of line additions and removals to produce the new file from

the old one . This method provides very course grained differences in source code files.
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Figure 3.1: The original visualizations from Anteater. The top row show the visualiza-
tions from the initial run of a program. The second row shows the visualizations from
a second run after a small modification.
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Canfora et. al. [21] expand on the Unix diff utility to provide more fine grained diffing of
textual source files that supports changes and moves, as well as additions and deletions.
Horwitz [64] expands their definition of diffing to differentiate between semantic and
textual changes when identifying changes to the source code. Semantic Diff [67] provides
a semantic report of the differences between two versions of a procedure through the
inspection of input-output behavior of the procedure.

Rather than diffing text source files, other methods first parse source code into ab-
stract syntax trees (AST’s) and then find diff the resulting trees [40], [43], [48], [61].
Similar to textual diffing methods, these methods look for the minimum number of
edits to move from the original AST to the new one, where an edit can be an addition,
removal, change, or move. These methods build off of Chawathe et al.’s algorithm for
detecting change in hierarchically structured information [28] by leveraging structure
and information specific to AST’s to more accurately identify differences. As part of
ProgDiff, we use gumtree [43] for source code differencing to highlight the textual pro-
gram changes. However, ProgDiffrequires additional methods for diffing the resulting

traces (discussed more in Section 3.4.1).

Trace Diffing and Comparison Suzuki et al.’s TraceDiff [119] relates most closely
to ProgDiff. TraceDiff provides automatic feedback and hints for students completing
introductory programming assignments. It uses program traces to illustrate differences
between an incorrect version of a program and a synthesized correct version. Leveraging
these differences, it provides hints to guide students through their mistakes. While
similar to ProgDiff, this tool focuses on assisting students in guiding students in their
assignments and utilizes minimal visualization.

Taheri et al.’s DiffTrace [120] provides diffs of program traces for debugging high-
performance computing code. It collects whole program function call traces per pro-

cess/thread and uses concept lattices to build the traces and identify the differences

73



between a normal trace and a fault laden trace. In contrast, ProgDiff operates only on
sequential programs and presents differences in program values, such as variables and
expressions, in addition to calling structure.

Other methods exist for comparing traces without formally diffing them. Miranksyy
et. al. use trace comparison to find sources of errors in software systems [86]. They
take an existing trace with correct behavior and compare it against a trace in which the
software misbehaves to calculate the entropy between them. German et al. [50] do not
directly collect a trace but allows people to specify an area of failure and then build a

change impact graph to demonstrate the effects of prior code changes on this area.

Visual Comparison of Traces Cornelissen and Moonen create visualizations to
highlight repetitive behavior and execution phases in a single program identified by
matching the trace to itself [34]. Intel’s Trace Analyzer provides timeline visualizations
to compare traces of MPI applications [1]. Triimper et. al. create multiscale visual-
izations for comparing large traces using icicle plots and edge bundles [125]. Voigt et
al. [128] create trace visualizations of method calls and object accesses for large scale
traces. While all of these tools use visualization for comparing traces, they all address
a specific type of problem: detecting similarities inside a single program, comparing
executions of MPI programs, and comparing executions of large scale programs. All of
these problems differ from the programs ProgDiff supports: understanding the impact

of small changes in general, medium-scale, single-threaded programs.

Comparative Visualization Munzner’s framework for visual design identifies com-
parison as a low-level user goal when analyzing data. [89]. Many visualization ap-
plications support this goal in volume rendering [131], and more areas TBD . While
there exist many applications supporting comparison, there exist few taxonomies and
frameworks for creating comparative visualizations. Pagendarm and Post describe ap-

proaches for comparative visualization in images [91]. Graham and Kennedy surveyed
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methods for visualizing (and thus comparing) multiple trees [57]. In 2011, Gleicher et
al. [53] developed a taxonomy for designing comparative visualizations for information
visualization. This taxonomy remains as the primary taxonomy for designing compar-
ative visualizations. It defines three types of comparative visualization: juxtaposition,
superposition and explicit encoding. We employ this taxonomy in ProgDiff’s visual

design and discuss these types in more detail in Section 3.4.2.

3.3 Classification of Program Changes

In this section we describe a classification of changes to a program from two perspectives:
changes to the source code and changes to the trace. We have found, through the
inspection of various program changes, that the two classifications do not have a direct
mapping. As such, a change in the source code does not have a single, well-defined
corresponding change in the trace. In fact, it may cause any type of change to the
trace. As such, we discuss the two classifications disjointly.

Several works exist on classifying types of changes to programs, for several types of
program representations. While most focus on changes to static representations of the
program (e.g. source code), these changes generalize to traces as well.

Purushothaman and Perry classify changes based on the textual changes to the
source code [96]. They present 4 types of changes: (1) modifications to existing lines,
(2) insertions of new statements between existing lines, (3) deletions of existing lines,
and (4) modifications of lines accompanied by an insertion and/or deletion of lines. The
fourth type combines the first three types.

Fluri and Gall [47] define a similar classification for changes to the AST. They
describe four program modification operations on an AST: insert a new leaf node,
delete a node from its parent, move a node to a new parent, update the value of

an existing node. Additionally, they provide several higher level changes for object
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oriented programs stem from one or more of the base modification operations. We use
this classification when describing the types of source code changes.

Lehnert et al. [79] have a similar taxonomy for classifying change, based on that of
Fluri and Gall [47]. Rather than classifying changes to AST’s, they define software as
a graph where nodes are artifacts such as UML diagrams or C++ classes and edges are
dependencies between the artifacts. Lehnert et al. present two tiers of changes: atomic
and composite. Atomic changes include the addition, deletion, and modification of
both nodes and edges. Composite changes require multiple atomic changes and include:
move, replace, split, merge, swap.

While all of these classifications operate on slightly different program representa-
tions, there seems to be a core set of operations that for classifying change: add, update,
and delete, with more complex changes consisting of combinations of these operations.
We use these core change types to classify the changes in both the source code and the
traces. In the remainder of this section, we discuss the two classifications in more detail

and how ProgDiff supports them.

3.3.1 Source Code Changes

Fluri and Gall’s classification of change types includes a variety of higher level changes
that depend on additions, deletions and updates. ProgDiff only supports a subset of
these changes, primarily those that modify the execution and functionality of a program.
We use these changes to classify the changes supported by ProgDiff and discuss those

it does not support.

Addition Fluri and Gall present a variety of changes that rely on the addition opera-
tion, including additional functionality, statement insert, parameter insert, and else-part
insert [47] . ProgDiff inherently supports all of these when diffing the source, however

some of them may not directly appear in the trace and each type may cause updates,
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1v def test():

2 iters = 5
3 val = 6
output =1
5w for iter in range(iters):

output *= val

return output
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for i in range(5):

v for i in range(10):
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Figure 3.3: Comparative view of source text. Red highlighting marks lines from the
original source that were changed (as in line 15) or deleted (as in line 14). Green
highlighting marks lines from the modified source that are updated versions of old lines
(as in line 16) or are newly added lines (as in line 19).
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additions or have no effect in the trace (discussed in the next section). For example,
the addition of a new parameter to a function will appear in a source code diff, however
unless that parameter affects the calculation of a value or the execution of a function
call or loop, the change will not appear in the trace. ProgDiff highlights added lines of

code using green highlighting, as shown in line 19 of Fig. 3.3.

Deletion Fluri and Gall present a complementary set of changes that rely on the dele-
tion operation, including removed functionality, statement deletion, parameter deletion,
and else-part deletion. Again, ProgDiff supports all of these when diffing the source but
they may not directly appear in the trace. Deletions to the source may propagate to
the trace as deletions, updates, or not at all. ProgDiff highlights deleted lines of code

using red highlighting, as shown in line 14 of Fig. 3.3.

Update The majority of update changes that ProgDiff supports fall under the “state-
ment update” type (e.g. updated parameter/variable values) with the rest falling under
“condition expression change”. These modifications do not explicitly show up in the
diffed trace but may result in changes that show up in the trace. Thus, source code
updates may result in any type of trace change. Rather than having an explicit en-
coding for line updates, ProgDiff treats them as an addition and deletion, such that it
highlights the original line of the update as deleted and the new version as added. We
show this in lines 15 and 16 of Fig. 3.3.

Unsupported changes Some changes defined by Fluri and Gall do not have any
affect on the trace and, as a result, ProgDiff does not support them. The renaming
of any program components, e.g. parameters, functions, variables, etc., will not have
an effect on the behavior of the program. The source code diff highlights this change
but, in the back-end, the originally named component still maps to the newly named

component and they are considered the same when running the trace diffing algorithm.
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14 result = pow(z,2) ©
15 total = total + result o Split plots by = Clear Filters Plot Options  Diff Options
16 return total
17

18

19 v def func_C(y):
20
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21 z = func_A(y)

22 return y+z

23
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29
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Figure 3.4: The execution diff of a program after we wrap the initial function call to
func_A in a call to func_C. Doing this changes the depth of the call to func_A, causing
this call and all subsequent children to be marked as additions.

Additionally, we do not support changes to the accessibility of a component (e.g.
a private or public variable), the type of variables, modifications to object state, or
changes to the inheritance structure of classes. While these changes have significant
affects in object oriented programs, they do not inherently have a significant effects in
Python programs or on execution traces.

Last, we do not precisely support modifications that alter the depth of components.
For example, if, in the original program, function A calls function B and we modify the
program so that function C calls function A calls which then calls function B, the call
to A is now at a new depth and will not be matched with the call to A in the original
trace. ProgDiff will mark the calls to A and B in the original trace as deleted and the

calls to A and B in the new trace as added. We show an example of this in Fig. 3.4.
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3.3.2 Trace Changes

Addition Additions to the trace result from a variety of source changes including:
added function calls, increased iterations in a loop, update of conditional statement,
etc. We define an addition to a trace as any node (function call, loop, assignment, etc.)
that does not have a corresponding node at the same depth in the previous execution.
Note, if a function call exists in the prior version but the call appears at a different
depth or from a different parent than in the original execution, it will be marked as an

addition. Fig. 3.4 shows an example of this.

Deletion Deletions in the trace result from a complementary set of source changes
to those that cause additions in the trace including: a removed function call, fewer
loop iterations, etc. Consequently, our definition of a deletion complements that of an
addition. We define a deletion in the trace as any node in the original execution that

does not have a corresponding node at the same depth in new version of the trace.

Update In traces, we limit the definition of update to only include updated vari-
able/expression values. When two matched instances of a variable differ in value, we
mark that value as updated. These updated values stem from program changes such
as the modification of a calculation statement or parameter, the insertion/deletion of a
calculation step or simply the use of a different randomly generated value.

We do not consider “updates” to function calls or loops in our traces. A clear
definition of what it means to update a function call does not exist in this setting.
Likewise, the definition of “updating” a loop could mean a variety of things, such as
changing the number of iterations, changing the values iterated over, etc. However,
those updates would likely spawn subsequent trace changes that our definitions easily

encompass. .
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3.4 ProgDiff’s Design

ProgDiff’s design consist of two primary extensions to Anteater: (1) the ability to diff
two Anteater traces, as well as the source code, and (2) extending the Anteater views
to facilitate comparison of the values from two traces. In this section, we discuss each

extension in detail.

3.4.1 Source and Trace Diffing

ProgDiff incorporates two forms of program diffing: diffing the source code and diffing
the resulting trace. In this section, we discuss how ProgDiff performs each of these

diffs.

Source Diffing As previously mentioned, ProgDiff uses Gumtree [43] to create the
source code diff by diffing the AST’s of the original and modified version of the program.
This allows ProgDiff to highlight the textual differences between the two versions of the
source code. .

Because ProgDiff already parses and traverses the AST to transform the source
code to generate the trace, it may seem that the AST diff would provide all necessary
information for diffing the traces. It already identifies any new, changed, or deleted
nodes in the AST so we would only need to mark occurrences of those nodes in the
resulting trace. However, two primary problems arise when only diffing the AST’s.

First, not all changes in a trace lead result from changes to the corresponding node
in the AST. For example, consider a variable that sets how many iterations a loop runs.
Changing the value of that specific variable will cause the loop to execute more or
fewer times. However, the loop node of the AST will remain unchanged. Thus, simply
diffing the AST’s and marking the changed nodes would not mark the loop nodes as

new/changed, just the iteration variable. Thus, the AST diff to mark changes in the
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trace would not mark all changes.

Second, in order to use the AST diff to match the old trace with the new trace, we
would have to re-run the original trace to mark the nodes that we know will change or be
deleted, thus allowing us to match them with the nodes in the new trace. However, we
do not want to re-run the original trace because if the program contains any randomness,
this may change the tracked values from the original trace. As a result, AST diffing
would only allow us to mark nodes in the new trace and would not provide means to
link the two traces together. Thus, while AST diffing makes sense for identifying the
differences in the two versions of the source code, we need an additional algorithm for

diffing the resulting traces.

Trace Diffing Execution traces inherently have a tree structure, where each child
node was executed from within the parent node. Because of this, to identify the dif-
ferences in the traces, we can use a tree diffing algorithm. ProgDiff employs a basic
tree diffing algorithm, adapted from [20]. The algorithm operates as follows. First, the
algorithm takes in two traces (V1 and V2) and traverses them simultaneously. Starting
at their roots, it inspects gather the children of both nodes and matches the children of
the V1 node to the children of the V2 node as possible. We consider two nodes to be a
match if they are of the same type and name (e.g. they are both variable assignments
and they assign to the same variable). We consider matching nodes to be “unchanged”
with the possible exception of variables and expressions. For variable and expression
nodes, we also consider their recorded values. If the nodes match in type and name
but not value, we identify them as “updated”, rather than “unchanged”. We identify
the reaming nodes in V1 as “deleted”, because they do not correspond to any nodes
in V2, and the remaining nodes in V2 as “added” for the same reason. After pairing
the children together the algorithm recurses on each pair and repeats this process. The

algorithm also recurses on the children of the unpaired nodes to classify all of their
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children as “added” or “deleted” as well. For a pair of matched nodes, once their
children have all been recursed on, the two nodes are combined into one and added
to a combined trace. Unmatched nodes are added to the combined trace with empty
attributes as placeholders for their would-be match. Algorithm 1 presents psuedocode
of the algorithm.

While this algorithm provides informative diffs for many types of changes, it does
not fully leverage all of the information specific to program traces. For example, in the
Fibonacci program in Figure 3.5 , we know that execution tree and values from the
original program (where we evaluated the 10th Fibonacci number) are a subtree to of
the evaluation of the new version (where we evaluate the 12th fibonacci number). As
a result, an ideal diffing algorithm would identify the recursive nature of this program
and identify that the original execution is just a subtree of the new one and mark the
parent nodes as added rather than marking leaves as new. As such, more sophisticated
algorithms need to be explored and can easily be swapped in. We discuss this more in

Section 3.6.

3.4.2 Comparative Visualizations

ProgDiff extends the visualizations in Anteater to support comparative visualizations
and interactions. Gleicher et al. [53] provides a taxonomy of different comparative vi-
sualizations. They present three types of comparative visualization for two datasets:
juxtaposition, superposition, and explicit encoding of relationships. Juxtaposition pro-
vides separate but adjacent plots in the same space that allow people to view each
individually as well as facilitate comparison of the two datasets. superposition com-
bines the two dataset into a single plot, fully displaying both datasets in the same
space. Explicit encoding directly encodes the relationship between the two datasets,
rather than presenting them as two disjoint datasets. For each type of comparative

visualization supported, ProgDiff provides a view using each of the three types with
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Algorithm 1 Trace Diffing Algorithm: This algorithm describes how ProgDiff performs
trace diffing. Note, the method MATCH_CHILDREN is described in Algorithm 2. The
method COMBINE_NODES is trivial and thus is not described here.

Input: T1: The trace of the original program, T2: The trace of the modified

program

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Output: CT: A trace combining T1 and T2
function DIFF(T1,T2)

new_children +— Empty List
if T1 is unmatched (T2 is NULL) then
Mark T1 as “deleted”
for Each child N of T1 do
childCT «DI1FF(N, NULL)
Add childCT to newChildren
end for
else if T2 is unmatched (T1 is NULL) then
Mark T2 as “added”
for Each child N of T2 do
childCT <« pIFF(NULL, N)
Add childCT to newChildren
end for
else
pairedChildren <~ MATCH_CHILDREN(T1.children, T2.children)
if The T1 & T2 are variables or expressions and the values differ then
Mark the T1 & T2 as “updated”
else
Mark the T1 & T2 as “unchanged”
end if
for each pair in pairedChildren do
childCT <« DIFF(pair[0], pair[1])
Add childCT to newChildren
end for
end if
CT < CoMBINE_NODES(T1,T2, newChildren)
return CT

29: end function
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Algorithm 2 Node Matching
Input: C1: list of children from T1, C2: list of children from T2
Output: pairedChildren: list of paired of nodes with the first node from C1 and
the second from C2
1: function MATCH_CHILDREN(C1, C2)
2: pairedChildren < Empty List

3: for Each node C in C1 do

4: pair <— [C,NULL]

5: Look for matching node in C2
6: if matching node is found then
7 pair[l] < matching node

8: end if

9: Add pair to pairedChildren

10: end for

11: for Each unmatched node C in V2Children do
12: pair < [NULL,C]
13: Insert pair into pairedChildren
14: end for
15: return pairedChildren

16: end function

@ Comparative GCT of recursive fibonacci of 5th and 7th fibonacci number using current diffing algorithm

5: vl... - - | | |
5: vl = fib(x-1) 6: v2... 5: vl... 1
5: vl = fib(x-1) 6: v2 = fib(x-2) 1

12: val = fib(7)
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5: vl = fib(x-1) 6: v2 = fib(x-2) ]
5: vl = fib(x-1) 6: v2... -5: vl...
B Wilo o
Example comparative GCT of recursive fibonacci of 5th and 7th fibonacci number leveraging
recursive information
|

[12: val = fib(7)

5: V1. C | -
5: vl = fib(x-1) |6: Yoo 58 Wilooo
[5: vi = fib(x-1) 6: v2 = fib(x-2)
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5: vl...

Figure 3.5: Caption
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controls to toggle between them. Fig. 3.2

Generalized Context Tree The comparative generalized context tree (GCT) needs
to show the two execution structures, while highlighting the differences between the two
executions. When creating the comparative GCT we must ensure that corresponding
parts of the execution align horizontally in the plot. The diffing algorithm combines the
two traces into a single one. We combine each pair of matched nodes into a single node,
maintaining the relative order for each trace. When creating the comparative GCT, we
use this combined trace to generate the tree. We present three comparative GCT views
based on Gleicher et al.’s taxonomy [53], two juxtaposition views and a superposition
view.

The first juxtaposition view presents side by side GCT’s, one for each trace. Each
GCT uses the combined trace to create the structure. In the GCT for the original
version, we draw all nodes that are updated, deleted, or unchanged. These nodes
correspond to those that existed in the original trace. However, we leave gaps for nodes
added in the second trace. This ensures that the two GCT’s align correctly. We draw
the GCT for the modified version in the same manner, leaving gaps for deletions from
the first trace. While this view gives the entire view of both traces, it suffers when
locating corresponding positions in the two plots.

The second juxtaposition view presents a single GCT visualization for both traces.
The single view does not combine both traces, but rather, roots the GCT’s at the same
block and builds the original trace downwards and the trace from the modified version
upwards. Doing this instead of presenting two separate views enables faster comparison
of the two traces. Again, we use the combined trace to build the GCT’s, leaving gaps
for additions and deletions as necessary. People no longer have to shift back and forth
between two plots and instead only need to find nodes at the same horizontal position

and vertical depth.
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The superposition view presents a single GCT containing both traces. Unlike the
second juxtaposition view, this view only builds downward. It builds the entire com-
bined trace, highlighting the additions, deletions, and updates. While this view presents

all of changes to the trace, it does not as easily illustrate the individual GCT’s.

Histogram ProgDiffprovides three histogram views, shown in 3.6. When creating
comparative histograms, we must ensure that the histogram bars align for both datasets.
If the range of the data changes significantly, then keeping the original bars and ex-
tending the axis as necessary could result in an excessive number of bars. Instead, we
bin both versions of the data together to create the bins and use those bins to create
the comparative histograms.

We developed three comparative histogram views. First, the juxtaposition view
places a histogram of each dataset adjacent to each other. We ensure that the bins and
y-axis align in both plots to enable easier identification of similarities and differences.

This view offers the advantage of allowing people to view the whole dataset, without
interrupting visual clutter. However, it requires mental overhead of matching positions
for comparison in two disjoint views.

The superposition view shows the two histograms side by side on the same axis. As
shown in Fig. , there are two bars for each bin, one for the original version and one for
the modified version. In contrast to the juxtaposition view, people can easily compare
matching bars without mental overhead. However, the combined histogram interrupts
the global view of each individual dataset, making it more difficult to get the entire
view.

Last, the explicit encoding view directly encodes the difference in the frequencies
between the new trace and the original trace. Fach bar represents the change from
the original frequency to the new frequency. As a result, some differences may end up

negative, requiring the histogram to account for negative values. This view strays the
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Figure 3.6: The comparative histogram views. (A) shows the juxtaposition view. The
top plot shows the histogram from the original trace and the bottom plot shows the
histogram from the trace of the modified program. (B) shows the superposition view.
The left bars (colored purple for all quantitative values) represent the count from the
original version and the right bar (colored orange) represent the count from the modified
version of the program. (C) shows the explicit encoding of the difference of counts be-
tween the two traces. The count represents the count of the original version subtracted
from the count of the modified version.
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farthest from a traditional histogram, as values cannot have negative frequencies. This
view allows people to easily and quickly see where the frequencies changed between the
two versions. On the other hand, people lose the context of the actual distributions of

the data involved.

Scatterplot ProgDiffalso provides three scatterplot views, complementary to those
in the comparative histograms. For scatterplots we must ensure that all corresponding
instances are aligned on the x-axis. The diffing algorithm, described previously in
Section 3.4.1 matches the instances from the new trace with those in the old when
possible and marks the rest as new or deleted accordingly.

Much like the juxtaposition histogram view, the juxtaposition scatterplot view sim-

ply plots two adjacent scatterplots, one of each version of the data. While these give
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a clear view of each dataset, they require additional effort to match instances together
and inspect individual differences, particularly if there exist unmatched instances. , .

The superposition view plots both sets of points on the same axis and colors the
points depending on which version they belong to. ProgDiff plots matching instances,
as identified during diffing, at the same x value. This plot allows easy comparison of
matching instances across the traces by inspecting their horizontal positions. However,
in some cases, it suffers from clutter and overlapping of values that do not significantly,
making some comparisons difficult.

The explicit encoding view directly plots the difference between the two versions
for each instance. For each paired instance, it calculates the difference between the
new version and the original version, and plots that point. For points from the original
version that do not have a matching instance, we simply treat their matching instance as
0. Thus for an unmatched value x from the original version, we plot it as —z. Similarly,
we plot unmatched instances from the new version as their true value (i.e. if z is in
the new trace and does not have a matching instance, we plot it as ). While this plot
reduces the clutter fo the superposition plot, it loses the context of the actual values
from the traces. To bring back some context, when someone selects a point we plot the
corresponding points from both traces to give them context of the original values.

Unlike Anteater, ProgDiff currently only supports scatterplots with a single value,
plotted by occurrence in the execution. T'wo variable scatterplots do not have an inher-
ent ordering of the points, making it difficult to visually cue people towards matching
pairs of points. Only the juxtaposition view, with accompanying interactions that link
the two plots could facilitate the comparison of two variable scatterplots. However,

even that view does not make the differences visually salient. .
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Figure 3.7: The comparative scatterplot views. The x-axis represents the occurrence (or
instance) in the execution of the shown value. (A) shows the juxtaposition view. The
top plot shows the scatterplot from the original trace and the bottom plot shows the
scatterplot from the trace of the modified program. (B) shows the superposition view.
We color points from the original version blue and points from the modified version red.
Occurrences with only one point indicate an addition or deletion of an occurrence. (C)
shows the explicit encoding of the difference between the occurrence in the modified
execution and the original occurrence. Gold points represent the difference between the
two occurrences. Selecting a point shows the actual values form both versions (in red
and blue). When clicking a point only shows one point, this indicates that the point

was added or deleted.
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3.5 Usage Scenarios

3.5.1 Gradient Descent

Recall the gradient descent example from 2.7.3. In this example, we have a gradient
descent program that returns NaN’s. We saw how, by using Anteater, we could visualize
the progression of the descent for various training rates. In our previous example, we
lowered the training rate enough that it was immediately apparent that lowering the
training rate had a positive affect on the descent. However, if someone did not know
how much to lower it, they may start with a smaller change. In this example, we do
not lower the training rate as much. Fig. 3.8 shows the visualizations from Anteater.
With just these visualizations, we cannot immediately tell if lowering the training rate
had any affect.

In contrast, Fig. 3.9 shows the visualizations when using ProgDiff. From the his-
togram, we immediately see that there are fewer NaN’s after lowering the training rate.
Then, in the scatterplot, we quickly see that it also reduced the oscillation, moving the
gradient descent in the correct direction. With ProgDiff, we clearly and immediately

see the effects of lowering the training rate.

3.6 Discussion and Limitations

Tree Diffing Algorithm The diffing algorithm has some limitations, its design as-
sumes more simplistic nodes where all nodes are the same type but may differ in value.
However, this a program trace contains a variety of node types, each of which still
have a value. Therefore, when looking for diffing the execution trees, the algorithm
may overlook certain commonalities due to slight structural differences. However, the
diffing algorithm used in this work is only one possible example of a diffing algorithm.

Due to the modular nature of the system, a different diffing algorithm can easily be
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Figure 3.8: The Anteater views for gradient descent. The top row shows the visual-
izations for the original execution. The bottom row shows the visualizations for the
execution after lowering the training rate.
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Figure 3.9: ProgDiff’s comparative visualizations of the gradient descent program in 3.8.
We can clearly see from the histogram that the values have changed, we have fewer
NaN’s and more values in the main bar. Then, in the scatterplot, we see that the

second run (in orange) is oscillating slightly less than the original version (in purple),
which tells us that reducin
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inserted into the system. The exploration of more sophisticated diffing algorithms is

left for future work.

Scale of Program Changes ProgDiff is designed to support minor changes. Minor
changes include those that only alter program values (and not the execution structure)
or only minorly alter the execution structure. ProgDiff will still work on more significant
changes, however as the changes become larger, the visualizations become more complex

and less readable. .

3.7 Conclusion

In this chapter, we presented ProgDiff, an extension to Anteater for visualizing the
execution effects of program changes. ProgDiff builds on the tracing infrastructure
of Anteater to trace two versions of a general Python program, identify the changes
between the two traces, and present these changes through interactive visualizations.
ProgDiff assumes nothing about a program other than that it is written in Python.
It does not assume anything about the structure of the program or even the type of
changes made to the program (although it performs better on smaller changes). As a
result, ProgDiff limits the types of questions we can ask when preforming comparative
tasks. Specifically, ProgDiff only allows us to ask general comparative questions, such
as “how does the behavior of this version of value x compare to the the behavior of
this other version of value x.” It does not enable us to ask deeper, more program
dependent questions such as “what is the influence of value x on dependent variable y”.
To address these questions, we need to explore the types of assumptions we can make
about programs and the types of comparative questions enabled by these assumptions.
In the next chapter, we explore one application of this with DimReader where we
assume that a program (1) takes a dataset as input and (2) performs differentiable

calculations on the dataset to produce an output which enables the question “if the
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data were slightly different, how would the output change”.
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CHAPTER 4

DiIMREADER

4.1 Introduction

In Chapters 2 and 3 we described how we can use visualization to understand the
behavior of general Python programs. These methods, while generally applicable, also
only answer general questions about programs. For example, Anteater facilates the
question

One of the central promises of data visualization is that its techniques will help
users and analysts make sense of large, complicated datasets. Data visualization, and
specifically techniques in dimensionality reduction, are routinely used in practice during
exploratory data analysis of challenging datasets.

Classical linear methods such as Principal Components Analysis have existed for
more than a century, but recent advances from non-linear methods that started with
Tenenbaum et al’s Isomap [121] have revolutionized the practice of dimensionality reduc-
tion. The potential to understand high dimensional data via low-dimensional represen-
tations is clearly attractive. But just what, exactly, are these non-linear dimensionality
reduction (NDR) methods showing? This is the fundamental question that drives the
work we report here. Data scientists and analysts use NDR’s in an attempt to create
a nice 2-dimensional representations for their data in hopes of learning some of the
underlying structure of the data. The NDR’s often result in nice pictures but give no
indication why the NDR placed things the way it did and no context to the input.

Consider van der Maaten and Hinton’s t-SNE, arguably the most powerful and cur-
rently most popular method for NDR [84]. Although practical experience attests to
t-SNE’s power to uncover cluster relationships in very challenging datasets, its sensitiv-
ity to the hyper-parameters is remarkable [130]. If small changes in parameter settings

produce plots that are fundamentally different, we must ask ourselves: are some results
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t-SNE LLE Isomap ° _‘l&f

Figure 4.1: DimReader explains non-linear dimensionality reduction methods by illus-
trating the effects of user-designed perturbations of the input dataset. It provides an
answer to the question “if the input data had been slightly different in a particular way,
how would the plot have changed?”. In the case of traditional scatterplots, it recovers
exactly the axis lines being displayed. In the case of non-linear methods, DimReader
recovers generalized axes, which indicate how dimensions of interest behave. Examples
of these axes are shown in (A) for the x, y, and z dimensions of the S Curve (an S
shaped 3 dimensional manifold). These axes also allow for the comparison of different
projection methods. This is exemplified in (B), where the petal length axis of the iris
dataset is shown for three projections. Petal length is well behaved in t-SNE but not in
the other projections . We also provide a technique for discovering good perturbations
of the input (perturbations that change the projection the most). The top of (C) shows
an example of a discovered perturbation. In context, shown at the bottom of (C), this
perturbation shows us that t-SNE is sensitive to flat shoes v.s. heels. The perturbation
wants to change the original image from a heel to a flat by filling in the arch.
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Transformation in original space:
“slight increase in sepal length”

scatterplot
Dataset

point in

dataset o
o

t-SNE

... induces transformation in scatterplot:
“dot moves horizontally to the right”

Sepal.Width

Sepal Length

lines of sepal length axis
are perpendicular to movement

... induces transformation in t-SNE:
“dot moves in a non-predictable way”

lines of generalized sepal length axis
are perpendicular to movement

Figure 4.2: In traditional scatterplots, the grid lines (or axes lines) exist to explain
what the plot is showing. Equivalently, they capture infinitesimal perturbations of the
dataset in specific directions, because they are always perpendicular to the directions
of movement. DimReader extends the same principle to non-linear dimensionality re-
duction (NDR) methods, and recovers generalized azis lines, which help explain NDR
methods in terms of interpretable data transformations.

generated by NDR methods just bad? Do different parameter settings show different
features of the data? More importantly, how do we even answer these questions?

In this work, we design data transformations, which induce transformations on the
visualization itself, elucidating the behavior of the NDR method (this is the perspective
introduced by Kindlmann and Scheidegger’s algebraic design process [72]). Specifically,
we use infinitesimal perturbations — small changes of the data in its original space
— to produce infinitesimal changes of the visualization. We then show how these
visualization changes can be interpreted as producing effective, non-linear axis legends.
In this way, our non-linear axes explain the NDR plot in the same way that axis legends
explain the positional encoding in scatterplots. As a result, analysts can understand and
evaluate dimensionality reduction plots similarly to how they evaluate linear methods.
In fact, we show in Section 4.3 that our methods exactly recovers the gridlines of typical
scatterplots. DimReader is quite general, and can be applied to many different NDR
techniques, only requiring access to the source code of its implementation. Specifically,

we use a method known as automatic differentiation to produce the necessary gradients
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Dataset ?.‘ d‘

vi 57 :
NDR + autodiff + \

perturbations 2) Perturbation vectors 4) Contour Lines

Figure 4.3: An overview of DimReader. For a given NDR method, we 1) compute
its position using the original implementation; 2) compute perturbation directions for
the input points with the transformed version of the implementation which uses dual
numbers (We discuss how to choose appropriate perturbations in Section 4.3.2); 3)
compute the scalar field whose gradient best matches the perturbation vectors in a
least-squares sense; and finally 4) compute its isocontours. Section 4.3 explains these
steps in detail.

for calculating the infinitesimal changes of the visualization [59]. An overview of the
process is given in Figure 4.2.

In summary, our contributions are:

A general framework to explain plots generated by non-linear dimensionality re-

duction, using infinitesimal perturbations

A practical implementation of the framework using automatic differentiation

A method for discovering good perturbations for a given dataset, useful when
the input lacks easily interpretable dimensions (and hence, lacks easily-defined

perturbations)

e An experimental study of the effectiveness and efficiency of DimReader using

three well-known NDR methods: Isomap [121], LLE [101], and t-SNE [84].
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4.2 Related Work

Projection methods have received a considerable amount of attention in information
visualization. In this section, we review the work that is most directly related to our
research, but cannot hope to cover the entirety of the field. For a comprehensive view
on multidimensional scaling and dimensionality reduction, we recommend Born and

Gronen’s textbook [13], and Fodor’s survey [49].

Projection methods in information visualization The observation that pairwise
similarities (or distances) can be converted into low-dimensional representations by a
mathematical formulation comes from Torgerson and his now-classical theory of mul-
tidimensional scaling [123]. In information visualization, force-directed methods have
long been used as a dimensionality reduction technique, from fully-automatic meth-
ods [25], [66], [88], to methods which take some amount of interaction, either through
placement of exemplar points [42], [69], [92] or through direct interaction with projection
parameters [68]. Although interactive methods offer a better hope for understandabil-
ity because the perturbation analysis we discuss can happen “in the analyst’s head”
during interaction, we argue that the visual encoding these techniques provide can still
be unclear. The technique we propose here can be applied to essentially all of the
methods above, and offers an attractive complement to both automated and interactive

projection methods.

Perturbation Analysis for data science The idea of understanding a system by
examining its behavior under perturbations is well-established in the engineering and
statistics literature. In the 1970’s, Cook introduced the notion we now know as Cook’s
distance [32], which measures the influence of a point on the parameters of linear regres-
sion models. In the context of visualization, Bergner et al. point to sensitivity analysis

as one of the requirements in understanding computer simulations [9]. In this paper, we
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use perturbation analysis as a central tool to recover readable axes from NDR methods,

in a sense incorporating sensitivity analyses into familiar visual metaphors.

Automatic Differentiation Perturbation analysis is clearly an important tool for
understanding systems, but the issue of how to implement it in existing computer sys-
tems is crucial. Automatic differentiation (which we explain in detail in Section 4.3)
provides a way to compute derivatives of arbitrary functions in a computer program,
provided access to the source code (or similar structural information about the com-
putation) is available [59]. To the best of our knowledge, the most mature software
library employing automatic differentiation is Ceres, written in C++ and employing
template metaprogramming [3]. DimReader is implemented in Python for simplicity

and terseness, but could easily be redesigned in C++.

Guidance and validation of projection results One of the issues with NDR is
that it’s hard to know what a plot is actually showing [126]. This has resulted in
a variety of papers which offer guidance and design principles on how to interpret
projections, based on a combination of real-world experience, synthetic examples, and
theoretical arguments [18], [78], [103], [108], [L09]. This work is essential to the current
practice, we argue, because current NDR methods do not offer explanations of their own
results — there are much fewer research papers offering guidance for understanding and
interpreting traditional scatterplots. As we show in Section 4.4, our technique provides a
way for a projection method to explain itself. Although analyst guidance and validation
will always be a part of a well-designed analysis infrastructure, our technique could
mitigate some of the problems that have been observed in deployed systems, where
projection methods are ultimately discarded because of readability issues [16], [65].

Lee et. al. review measures for assessing the quality of NDR techniques .
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Augmented visual representations There is another avenue of attack on the read-
ability problem of NDR methods. Often, researchers will augment the results of the
projections with visual diagnostics that pinpoint potential problems. Seifert et al. aug-
ment the projection by showing how the projection’s stress (roughly the discrepancy
between source-space distances and target-space distances) varies spatially in the NDR
plot [110]. In [7] and [80], the projection is augmented to show uncertainty measures
and distortions in NDR’s respectively. Cutura et. al’s VisCoDeR allows users to com-
pare and explore different dimensionality reductions by augmenting the projection to
allow users to explore how dimensions are mapped in the dimensionality reduction re-
sults as well as the high-dimensional proximity of projected points to a selected point in
the projection [36]. Stahnke and co-authors described methods to probe a projection,
through carefully designed user interactions and custom visual encodings [115]. Our
method for extracting effective axes can be seen as a way to allow any NDR method
to augment itself with metaphors that have a well-defined analogy in the linear case,
as can be seen in Section 4.4, and Figure 4.7 specifically. In Section 4.4.3, we provide

a more direct comparison to some of the methods used in Stahnke et al.’s work.

Explainable visualizations Every plot assumes an audience that can read it, and
visualization literacy remains an active area of research [15]. Often, novel metaphors
are necessary because of the data or task complexity [17]. We argue that generalizing
well-established techniques such as axis legends to NDR can help explain those tech-
niques. Gleicher’s Explainers take user interaction to design specific projections for
input data [52]. In contrast, our technique extracts axes inherent in the non-linear
projections. Coimbra et al. explain projections through enhanced biplots [31]. Simi-
lar to our technique, they show axes for the dimensions of the input data in the low
dimensional plot. Because of the non-linearity of these dimensionality reductions, the

biplot axis will change based on the projected position of the sampled point whereas
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our technique captures the axis lines for the entire projection. A similar approach is
proposed by Cavallo and Demiralp in Prolines, a technique for interacting with data
points in both low- and high-dimensional spaces [24]. Prolines allow efficient, direct
manipulation of the output points, but require access to efficient forward and back-
ward projection, limits its applicability. Flow-based scatterplots [26] and Generalized
Sensitivity Scatterplots [27] show the sensitivity of a dimension in a scatterplot with
respect to other dimensions in the dataset. Similar to our technique, these methods
use derivatives to determine the sensitivities. Our technique differs by showing sensi-
tivity of the projection with respect to the original data rather than sensitivity between
dimensions in the original data. The data context map from Cheng et. al. provides
a way to simultaneously look at clusters of data points and the location of the most
dominant values of each attribute with the assumption that the attribute values always
decrease as points move farther away from it. [29]. Our technique differs by showing
the behavior of a dimension throughout the entire projection, not just the location of

the most dominant value.

4.3 Technique

Our technique is broken into two parts: (1) explaining an NDR method using a known
perturbation (DimReader ) and (2) searching for good perturbations when there is no
known perturbation (after which DimReader can be applied).

In principle, all that DimReader requires is the ability to compute derivatives of the
projection coordinates with respect to each of the input points. For extremely simple
techniques (such as scatterplots and other fixed linear projections), these derivatives
can easily be evaluated in closed form. However, more sophisticated methods such as
Isomap, LLE, and t-SNE involve long computation chains, for which the evaluation of

the derivative would introduce significant development overhead. Instead of trying to
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solve them in closed form, we take central advantage of automatic differentiation. [59].
As we describe next, automatic differentiation allows us to calculate the derivative of a

projection with minimal implementation effort.

4.3.1 Automatic Differentiation

In this paper, we use a particular form of automatic differentiation known as forward-
mode automatic differentiation. In what follows, we will refer to it as “autodift”.

In forward-mode autodiff, the program’s derivative with respect to a specified vari-
able is computed alongside the function value, by using an extended number system. In
this system, we replace numbers in the program with dual numbers that have the form
x = (a,b) where a holds the original value of the number and b carries the derivative
of x with respect to our variable of interest. When we initialize a variable y, we set b
to one if that is the variable we want to differentiate with respect to (since dy/dy = 1)
and zero otherwise. When the projection is run with dual numbers in place of regular
numbers, in addition to calculating the projected points, it calculates their derivatives
through applications of the chain rule and derivative rules (product rule, quotient rule,
etc.).

Note that autodiff is always performed at a specific value, and with respect to a
specific variable. It produces two numbers as a result: the function value and the partial
derivative with respect to the chosen variable. This has two important consequences
for our design. First, we need to decide over exactly which variables we will take
derivatives. Second, we need to execute the program many times in order to evaluate

many different derivatives. This will become important in Section 4.4.4.
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4.3.2 DimReader Process

Overview of the process

To apply DimReader to an NDR, method, there are four steps. Each of these steps is

discussed in a subsection below.

e A user chooses a perturbation of interest, which defines an infinitesimal change

for each data point (possibly in different directions).

e The NDR method is executed many times using dual numbers, from which we

obtain the perturbation vectors, one for each input point.

e From the perturbation vectors, a scalar field whose gradient matches the pertur-

bation vectors is computed.

e The isolines of this scalar field, which are perpendicular to the gradient, are

extracted using Marching Squares. They form the effective axes.

Choosing which perturbation to use

The first step of our method involves a choice of the perturbation of the dataset. A
perturbation is a small change to a specific dimension (or set of dimensions) for each
data point in the original, high-dimensional space. Thus, the choice of perturbation
corresponds, effectively, to an analyst answering the following question: “if each data
point were slightly different in this specific way, what would happen to the visualiza-
tion?” In order to recover different features of the NDR method and its effect on the
dataset of interest, different perturbations can be designed. In the following, we discuss
choosing a perturbation in a dataset with interpretable dimensions. We discuss discov-
ering perturbations for other datasets in Section 4.3.4. In automatic differentiation,

perturbations are represented by the derivative part of the dual number for the original
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# Basic method, O(numPoints) runs

for i in range(0, numPoints):
points = copy(inputPoints)
points[i] = perturb(points[il, perturbatlon)
projection = project(points) # ect uses a
dx, dy = projection.derivative [1]
projectionVectors[i] = vector(dx, dy)

return projectionVectors

# Improved method, 0(log(numPoints)) rums
counts = zero_array(numPoints)
projectionVectors = zero_matrix(numPoints, 2)
while any(counts < 1):
points = copy(inputPoints)
for i in range(numPoints):
if random() < 0.5: # perturb each point with probability 0.5
perturbed[i] = true
points[i] = perturb(inputPoints[i], perturbation)
projection = project(points) # project uses autodiff
for i in range(numPolnts)
if perturbed[il: # only store wectors of perturbed points
dx, dy = pro_]ectlon derivative[i]
projectionVectors[i] += vector(dx, dy)
counts[i] += 1
for i in range(numPoints): # average
projectionVectors[i] /= Counts[l]
return projectionVectors

all perturbations performed

Figure 4.4: Although a basic implementation of DimReader is easy to understand (top),
it only extracts one perturbation vector at a time. A more efficient implementation
(bottom) extracts half of the perturbation vectors from the input at once. To remove
possible correlations between the outputs, we choose which points to include at random,
and iterate until all points have been included. The expected time in this case is
logarithmic on the size of the input point dataset.

data points. The perturbation of a data point with d dimensions has the form of a
unit vector with d elements where the value of each element specifies how much the

corresponding dimension is perturbed relative to the rest of the dimensions.

Datasets with interpretable dimensions Some datasets have interpretable columns.
Take the iris dataset, for example, which is used in Figure 4.2. In that case, a pertur-
bation that changes each of the input points in the direction of a given dimension will
reconstruct, for an NDR method, curved axes lines that correspond, roughly to the lin-
ear grid lines in scatterplots. Concretely speaking, we evaluate each input point p; as

(pi, (0,---,0,1,0,---,0)), where the value 1 is positioned at the dimension of interest.
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(A) Values of Perturbations on (B) Values of Perturbations on

Corresponding Projected Point All Other Projected Points
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Figure 4.5: (A) shows the effect sizes of perturbing point p; on its corresponding pro-
jected point, v;. DimReader uses these values in its computations: note their large
magnitude (values outside of the displayed range are clamped at -.5 and .5). (B) shows
the effects sizes of perturbing point p; on all projected points aside from v;. DimReader
assumes these values are zero and discards them: note their small magnitude.

Extracting derivatives from NDR methods

In this section, we describe two techniques used in DimReader to extract the pertur-
bation vectors ,the changes to the projected coordinates resulting from a perturbation
on the input, for a given projection. The first technique is simple, straightforward, and
provides a good intuition for the overall strategy. Unfortunately, this technique requires
as many executions of the NDR method as there are input points in the dataset, which
often means the overall performance can suffer. The second technique, on the other
hand, only requires as many runs as the logarithm of the number of input points. We
give pseudo-code for the two approaches in Figure 4.4.

DimReader needs access to the source code for the NDR method at this step so
the method can be executed with dual numbers. In principle, the source code can
be executed without any modifications aside from converting the input points into
dual numbers. In practice, some issues arise because of efficiency concerns and library

limitations. We discuss these issues at length in Section 4.4.

Perturbing one point at a time After a perturbation is chosen, the NDR technique

is executed with automatic differentiation for every point in the dataset. On execution
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i, the point p; is perturbed (that is, we replace p; with (p;, p;) where p; is the specified
perturbation of p;). The NDR technique will return the projection coordinates, v, for
all points, along with the derivative of the projection coordinates with respect to the
perturbation of p;, j—;’i. We use the derivative of each coordinate in the reduced point
v; as the vector that describes the change in the coordinate, and discard the rest of the

information of the run. The pseudocode for this is given on the top half of Figure 4.4.

Perturbing many points at a time The method described above is inefficient,
requiring O(n) evaluations of the NDR method. A naive attempt to optimize the
method would evaluate the projection derivatives with respect to all of the points (and
hence all of the per-point perturbations) at once, and only run the autodiff version of
the code once. Unfortunately, this does not work for many perturbations, because most
DR methods are invariant to dataset translations. The perturbation of only one input
point at a time offers interesting insight into the NDR method, but if we move all of the
points at once in the same direction, NDR methods such as Isomap, LLE, and t-SNE
will produce exactly the same projection (the perturbation vectors will be all zeros).
We solve this problem by adding a small amount of randomization. Instead of
perturbing one point at a time, we can choose half of the points at random to perturb,
while the other half does not change. We then store the projection vectors for the points
we chose to perturb, and repeat the process until we have actually perturbed all of the
input points. After each round, we expect to halve the number of unperturbed points,
which gives an expected number of repeated runs which is logarithmic on the number
of input points. The pseudocode for this is given on the bottom half of Figure 4.4. We
found that the DimReader plots produced by perturbing many points at a time are

indistinguishable from the plots produced by perturbing one point at a time.

Ignoring changes in unperturbed points In some cases, perturbing a point p;

has an effect on points other than its corresponding projected point v;. However, the
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effects on other points are small enough that we can effectively ignore them. In Figure
4.5, we show that the effect of perturbing each point p; on the other points, v; (i # j)
tends to be near zero and very rarely is significant. We show this result for the iris
dataset, but have found it to be true in general for t-SNE in all datasets we checked.
Intuitively, we expect a good dimensionality reduction to be robust to a small change in

a single point, and thus the residual effect on the rest of the points to be insignificant.

Reconstructing the direction field

Once we have the projected points and their derivatives (that is, the perturbation
vectors), we need to reconstruct the direction field, in order to extract perpendicular
lines. We achieve this by computing a scalar field whose gradient best matches the
vectors. We use a simple least-squares reconstruction technique, adapted from Ferreira
et al.’s vector-field clustering work [45], which we illustrate in Figure 4.6. We first
decompose the output plane in a rectangular grid, and split each grid square into two
triangles, giving a triangular mesh of the output space. The resolution of this grid needs
to be decided ahead of time, and we use a 10x10 grid in our examples for this paper.
We model a scalar field on the output plane as a piecewise-linear function on the grid
values. Each point and its perturbation vector is interpreted as a linear constraint on
the vertices of its corresponding triangle. To find the best-fitting scalar field, we solve

it in a least-squares sense, regularizing the system to ensure a unique solution [45].

Extracting perpendicular lines

The final step is quite simple. With the scalar field expressed as values in a triangular
mesh, we can use marching squares to extract isocontours [5]. By construction, the
gradient of this scalar field matches the perturbations. Since isolines are perpendicular
to a function’s gradient [106], the resulting curves will tend to be perpendicular to the

perturbations. As we show in Figure 4.2, these isoline can be thought of as generalized

108



IC)

]
]

|-

Figure 4.6: An illustration of the process to recover generalized axes. Given the point
positions and perturbation vectors (a), we construct a triangular mesh and interpret
each vector as a linear constraint on the gradient of a function (b), which gives values
on each of the vertices (c¢). From these values, we can extract lines perpendicular to
the perturbation vectors using marching squares.
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Figure 4.7: Extracting axes from the Iris dataset with four projections: PCA, Isomap,
LLE, and t-SNE. We only show petal length and sepal width because petal width is
extremely similar to petal length and sepal length is very similar to sepal width. We
discuss how to interpret these plots in Section 4.4.1
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azxes lines.

4.3.3 Interpreting DimReader Plots

In our plots, the projected points would move perpendicular to the isolines nearest to
them if the input were perturbed in the specified way. An increase in the corresponding
dimension would move the point from light to dark. The relative density of the iso-
contours can be interpreted similarly to the behavior in scalar fields. Narrowly-spaced
isocontours indicate a high sensitivity to changes in the independent variable, (in our
case, projection coordinates). Widely-spaced isocontours indicate low spatial sensitiv-
ity: a change in the projection coordinates is not expected to change the outcome
variable by much. Curved isolines indicate that the same perturbation has a different
effect on different points. Isolines that fan out (go from narrowly-spaced to widely-
spaced as in Figure 4.8) indicate that the sensitivity of the plot is changing from more

sensitive on one side to less sensitive on the other.

4.3.4 Discovering Good Perturbations

We may not always know good perturbations for a dataset, such as the MNIST digits
where it is not clear what the best way to perturb each image would be. To help
solve this problem, we offer two methods to recover good perturbations. We define
good perturbations as perturbations on the input that change the projection the most
under the given constraints. Both of the methods require that we have a tangent
map, M, for the projection. The tangent map allows for efficient calculation of the
perturbation vector, v, for a given projection, without running the projection itself.
Given a perturbation on the input p, M - p results in the perturbation vector v, i.e. v =
dv/dp where v is the projected coordinates. The vector p consists of the perturbation
of each input point concatenated into a single vector (end to end) and the perturbation

vector ¥ consists of the perturbation vector v; of each projected point (v;) concatenated
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Figure 4.8: The best perturbation for the iris dataset. The left plot is the DimReader
plot for this perturbation. In the two plots on the right, the color of each point shows
how much the point is perturbed for the specified dimension. We see that the sepal
width and sepal length are perturbed more in the Red cluster (the Setosa cluster) than
the petal dimensions which means that, for this cluster, the projection is sensitive to
changes in the Sepal dimensions. The perturbations for the points in the other cluster
are insignificant. This tells us that perturbing only the Setosa points will change the
projection the most.

into a single vector. A single column of M can be recovered by a perturbation vector
that has a single entry of 1 and the rest zeros (i.e. perturbing a single dimension of a
single point). By doing this for each dimension of every point, the entire tangent map
can be recovered.

One observation about the tangent map is that the values we need for calculating
the perturbation vectors lie in k£ X d blocks along the diagonal, where k is the dimension
of the projection (typically 2) and d is the dimension of the input data. Because we
ignore the effect a given perturbation on all other points (as discussed in 4.3.2), we set
the rest of the matrix to zero. We exploit the block structure of the tangent map in

both of our methods for finding the best perturbation.

Perturb all points in the same direction

The first method for recovering the best perturbation is to find the single perturbation
that when applied to all points changes the projection the most. The formulation for

this method is:
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argmaz y_||B|]> st ||0%|| =1
veR?

where B; is the block on the diagonal of M for point i. This can be rewritten as
>, 0B Biv + A9 — 1). To find the maximum, we take the derivative with respect
to 0 and set it to zero: 3 oTBI B;v + (070 — 1) = Y. 2B B;v — \20 = 0. The
best perturbation vector is the eigenvector of the matrix ), BiT B; with the largest
eigenvalue. This gives us a single perturbation, v, that when applied to all points
maximizes the change in the projection. v is constrained to have unit length to prevent

the method from choosing an arbitrarily large perturbation.

Perturb each point individually

The second method for recovering the best perturbation is to find different perturbations
for each point that collectively change the projection the most constrained so that points
that are projected to similar places have similar perturbations. The formulation is as

follows:

argmaz »_||Bivil[> =AY > i = 5]|?S(i,5) st |07 =1
veERY P P

where Bj; is the block on the diagonal for point i, ¥; is the perturbation for the
point i, A is a free parameter for how much smoothing we want, and S(i,j) is the
similarity between the projection of points i and j, p; and p;. This similarity is defined
as S(i,7) = e~ IlPi=pill*/o* 52 ig a free parameter set by the user that determines how
close points have to be in the projection to be considered similar. We can rewrite the
above equation as follows:

nggxzﬁz’BiTBi@i - )\ZZ@' — 05,0 — 0;)8(i,§) st [0} =1
veER i i j
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We observe that >, > (v; — v;,0; — v;)S(, j) takes form similar to a Laplacian
matrix, Ls multiplied by the entire perturbation vector v (the concatenation of all of the
individual perturbations, ©;) on both sides: o7 Ls0. Ly differs from a standard Laplacian
matrix in that rather than having diagonal values ) i S (,7) and off diagonal values
—S(i,j), it has diagonal values I*Z#i S(i, j) and off diagonal values I+ —S(i,j) where
I is d x d identity matrix.

Furthermore, the equation can be rewritten in terms of the whole matrix, M, and
the entire perturbation vector, v giving us the following equation which incorporates

the constraint on the length of v:

argmax 0 MT Mo — MNoT Lyv — Mot? 0 — 1
vERT

Taking the derivative with respect to ¥ and setting it to zero, we get

o7 (MM — \Ly) — Mot = 0

The entire perturbation vector, @, is the eigenvector of the matrix M7 M — AL, with

the largest eigenvalue.

Choosing A\ and o¢. o controls the width of a gaussian centered on each point.
Examining the results of the projection itself gives some information about plausible
values for 0. For example, points outside further than three standard deviations from
each other are essentially treated independently, but at the same time, we don’t want a
o that creates a gaussian which covers the entire projection. For choosing A, we should
be looking at the resulting perturbations. If a single point is heavily dominating the
perturbation (i.e. it moves much more than the rest of the points) then A is likely too
small. In contrast, if all points are perturbed in almost exactly the same way, this is

an indication that A may be too large.
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4.4 Implementation and Experiments

In this section, we discuss the implementation of our techniques along with a suite of
experiments designed to explore the capabilities, performance, and limitations of Dim-
Reader. We will show how DimReader directly addresses the following gaps identified
in Sedlmair et al.’s interview study about gaps between theory and practice in dimen-
sionality reduction (DR) [108]. These include the interpretation gap: “what do the
results mean?”; guidance gap, “what algorithm to use?”, and the non-linear unmapping
gap: “how do projection dimensions relate to input dimensions?”.

Our current prototype for DimReader is implemented in Python and numpy [129].
Our t-SNE implementation is closely based on van der Maaten’s Python code [83], while
the LLE and Isomap implementations are from-scratch. The entire method takes about
3,500 lines of Python, including implementations of Marching Squares, the classes for

autodiff, and the linear solvers described below.

4.4.1 DimReader

In the following we look at a well known dataset, the iris dataset, with known pertur-
bations, and simple projection algorithms, in order to better understand the behavior

of the technique [73].

Linear projections

We start with showing results of linear projections as a basic sanity check on the
behavior of DimReader. Figure 4.7 shows a typical example of the axes reconstructed
by DimReader when using linear projections. Since linear projections can be exactly
represented by a matrix multiplication, the derivatives of input points position with
respect to one direction will always be constant vectors. As a result, the reconstructed

scalar field is almost (except for the influence of the regularization terms) a linear ramp,
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and so the contour lines are evenly spaced and parallel, which indicate that changes in
the input variable will behave identically across the entire field. Despite their limited

power, this property is one of the main advantages of linear projections.

Isomap

Isomap was one of the first NDR techniques to recover curved manifolds well in prac-
tice [121]. Isomap builds a weighted graph which approximates the manifold, where
edges have weight equal to the distance between points, and each point has edges to its
k nearest neighbors (k is specified by the user). The global distance between two points
is defined to be the shortest-path metric on the graph. The low-dimensional projection
is constructed from the shortest-path metric using classical MDS [13].

We implemented Isomap not only because of its historical significance and relatively
high-quality results, but also because it highlights an interesting property of automatic
differentiation: it works over code bases that we tend to not think of as differentiable.
Specifically, the operations in Dijkstra’s algorithm for shortest paths are all well de-
fined for dual numbers, and so we naturally can extract the sensitivity of shortest-path

distances with respect to changes in the input points [33].

Interaction with numerical linear algebra routines The final step of Isomap
is Classical MDS, and this presents unique challenges for our autodiff implementation
based on operator overloading. Specifically, Classical MDS requires the computation of
eigenvectors, and since Python libraries for numerical linear algebra are implemented
through high-performance libraries like Lapack, the operator-overloading functionality
is not present. To solve this issue, we implement the eigenvalue computation through
power iterations [55], since matrix-vector multiplication of dual numbers has efficient

dual-number implementations in terms of matrices of values and e terms.
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Isomap Experiments Because Isomap uses classical MDS (which is essentially a
linear projection), we should expect that, to some degree, Isomap would behave much
like linear projections. This is indeed the case with simpler datasets, such as the Iris
dataset, shown in Figure 4.7. However, there are some interesting differences. Consider
the generalized axis for the “sepal width” variable which DimReader recovers. Even
though the point positions generated by Isomap are quite similar to that of PCA, the
sensitivity of the projection differs dramatically from the cluster of Setosa samples to
that of Virginica and Versicolor samples. Even more interestingly, it seems that the
sensitivity is caused by only some of the Setosa samples. This differentiation is not
present in the linear projection, and would not be clear from the Isomap plot alone. In
this example, DimReader helps overcome Sedlmair’s interpretation gap by providing an
explanation for why Isomap spread the points in the Setosa cluster (Isomap is sensitive

to differences in the Sepal Width in this cluster) that would otherwise be unknown.

Locally Linear Embedding

The next algorithm we highlight is Roweis and Saul’s Locally Linear Embedding [101]
(LLE). Like Isomap, LLE uses a nearest-neighbor graph to recover a global view of the
dataset. LLE computes edge weights for the nearest neighbor graph, such that each
vertex can be best reconstructed by a linear combination of its neighbors using those
weights. On a second step, the projection coordinates are recovered by finding positions

on the plane that best respect the weights.

Interaction with numerical linear algebra routines Similarly to Isomap, our
autodiff implementation of LLE involves a small degree of adaptation. In the case of
Isomap, we required the computation of the largest eigenvalues of a matrix. In the case
of LLE, we need to compute the smallest non-zero eigenvalues. Our implementation uses

inverse power iteration [55]. Inverse power iteration, in turn, requires a linear system
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Figure 4.9: An overview of perturbations for points in the(A) MNIST digits and (B)
MNIST fashion. There is structure in the perturbations that our technique discovers.
They often resemble their true digit (or clothing article) but with some variation. Darker
areas are perturbed more than lighter areas.
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solver, which presents similar issues for dual number implementations. Our solution is

to implement a black-box linear system solver using conjugate gradients [112].

LLE Experiments Locally Linear Embedding is a popular method due to its per-
formance [101], but is known to produce distorted projections [39]. In this section, we
illustrate how DimReader might help pinpoint such problems. Consider the projection
of the iris dataset in Figure 4.7. Note that neither of the recovered axes quite cross
the projection perpendicularly on the left side of the arc (the Versicolor and Virginica
cluster): no direction of perturbation on the input moves the points diagonally along
that cluster. This suggests that the shape of the cluster is an artifact of the projection
method. Compare this with the Isomap projection in Figure 4.7: Isomap has pertur-
bations which cross each of the clusters perpendicularly (Sepal Width for Setosa and
Sepal Length for Versicolor and Virginica). Thus, Isomap is more faithful to the under-
lying data than LLE. This is evidence that DimReader helps bridge Sedlmair et. al’s
guidance gap [108], giving an indication for which NDR algorithm performs better for

this data.

t-SNE

t-SNE is among the most powerful techniques for dimensionality reduction, and also
one of the hardest to interpret appropriately [84], [130]. As such, it is a natural target
for DimReader. In addition, t-SNE is significantly different from Isomap and LLE in
both formulation and implementation. This provides us with an opportunity to explore
practical issues of using DimReader to explain its results.

We highlight two separate issues to discuss: the presence of multiple local minima,
and its formulation in terms of the gradient of an energy function. While the first issue
presents challenges for implementations that depend on repeated executions, the second

issue allows us to achieve a significant speedup.
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Multiple minima The energy function that t-SNE minimizes has more than one
local minimum. This means that any source of randomness in the implementation
will cause multiple runs to possibly diverge, presenting a challenge for our approach.
Most implementations of t-SNE require an initial guess for the projection, and we take
central advantage of this. Specifically, in our first execution of t-SNE we use a random
initial guess and regular floating-point numbers to calculate a local minimum that is
then used as the initial guess for subsequent runs. In the initial run we also capture
variables that serve as parameters for subsequent runs to ensure that they reach the

same local minimum.

Gradient descent t-SNE is implemented as an explicit gradient descent formulation
through an additive update of the parameters. Specifically, the main loop of t-SNE is

roughly as follows:

pos = initial_guess
g = gradient (energy(pos), pos)
while mag(g) > epsilon:

pos = pos - rate * g

g = gradient (energy(pos), pos)

As aresult, when the loop exits, we know that the gradient of the energy with respect
to the position will be close to zero. This means that to recover any one perturbation
of the t-SNE formulation with respect to an input point, all that is required is to
run one single iteration of t-SNE with dual numbers. By providing the dual-number
implementation the result of the execution of the floating-point implementation (as
explained in the previous paragraph), the loop will execute at most once before exiting
— in fact, in order for the sensitivity of the positions with respect to the input to be
recorded in the pos variable, we must force the loop to execute at least once. Still,

since t-SNE typically executes between 100 and 1000 iterations in this loop, this simple
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optimization achieves a significant speedup.

t-SNE Experiments T-SNE is often considered to be the state of the art in NDR
methods, but one of the main objections to its use in practice is the opaque nature of
its optimization criteria [130]. It is unclear how effectively the projection recovers high
dimensional information. Consider the t-SNE axes in Figure 4.7. t-SNE is detecting
variation in the petal length and petal width of the Virginica and Versicolor cluster
and subsequently spreading the cluster based on these dimensions. This helps explain
how petal length behaves in the projection, providing evidence that DimReader helps

bridge the non-linear unmapping gap [108].

4.4.2 Discovering Perturbations

The implementation of the equations in 4.3.4 for discovering perturbations is straight-
forward as long as the machine has sufficient memory to hold the expanded laplacian
matrix, Lg. This matrix becomes very large for very high-dimensional data and thus
requires significant memory. To solve this problem, we were again able to exploit the
block structure of the tangent map as well as the structure of the Laplacian matrix: the
diagonal values are > ki S;,; and the off diagonal values are —S; ;. We implemented a
version of power iteration that does not require access to the matrix M7 M — AL, but
instead requires a function that, when given a vector v, returns (M7 M — ALg)v. The
multiplication function calculates elements of the output vector individually and thus
does not require the entire L matrix.

Using this method, we uncovered perturbations for several datasets projected with t-
SNE. In the following experiments, we use the method in Section 4.3.4 to find individual

perturbations for each point.
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U

Figure 4.10: DimReader axes and value heatmaps for the u,v, and x dimensions of the
swiss roll. A discussion of these plots is in Section 4.4.3.
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Iris

We first look at the best perturbation for the Iris dataset. Figure 4.8 shows the Dim-
Reader plot for this perturbation as well as a plot for each dimension that shows how
much that dimension was perturbed in each point through the color (the darker purple
a point is, the more it was perturbed). The DimReader plot shows that the best per-
turbation only perturbs points in the Setosa (red) cluster. In the individual dimension
plots, the Setosa cluster is perturbed primarily in the Sepal length and Sepal width di-
mensions which tells us that in this projection, points in the Setosa cluster are sensitive
to changes in the Sepal dimensions. Comparing 4.8 to the t-SNE plots in Figure 4.7,
the movement of the Setosa cluster with the discovered perturbation is similar to the

movement when the sepal width or sepal length is perturbed.

MNIST Digits

Figure 4.9 (A) shows an sample of discovered perturbations in the projection. The
perturbation images often resemble a variation of their corresponding digit or a nearby
digit (due to the constraints defined in Section 4.3.4). These perturbations show us that
t-SNE is capturing meaningful information about the dataset. In Figure 4.9 (A), the
perturbation that moves the ”seven” the most turns the ”seven” into a “two” and moves
it toward the cluster of “two”s. Thus, DimReader, is showing evidence that t-SNE is
capturing information about what constitutes a “two” and is using that information to

separate out the two’s into their own (imperfect) cluster.

MNIST Fashion

The MNIST Fashion dataset is similar to the digits dataset in that each point represents
a 28 x 28 pixel image and there are 10 different classes of images (articles of clothing) but

is more complicated than the digits dataset. A t-SNE plot with selected perturbations
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Figure 4.11: DimReader axes and value heatmaps for the x, y, and z dimension of the
interlocked rings. A discussion of these plots is in Section 4.4.3.
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found by our technique is shown in Figure 4.9 (B). Just as in the digits perturbations,
there is structure in these perturbations. In the example in Figure 4.1 (C), our technique
is finding perturbations that capture information about how t-SNE is projecting the
data. DimReadertells us, that for the heel in the middle, the perturbation that moves
this point the most, changes it from a heel into a flat shoe. This also shows us that
t-SNE understand the difference between flat shoes and heels and is able to separate

them.

4.4.3 Synthetic Examples

In this section we will look at the DimReader plot with two synthetic examples, the
swiss roll and the interlocked rings, and compare them to the value heatmaps for each

dimension from Stahnke et. al’s Probing Projections.

Swiss Roll

The swiss roll dataset is calculated from the equations z = ucos(u), y = usin(u), z = v
where 37“ <u< 97” and 0 < v < 15. Figure 4.10 shows perturbations of the U,V, and

X dimensions.

PCA In the v dimension, the DimReader plot shows that increasing the v in the
original data moves the projected points to the left. In comparison, the value heatmap
for the v dimension is difficult to read due to the high variance in v between neigh-
boring points. This highlights a fundamental difference between DimReader and value
heatmaps: DimReader is showing what the projection is doing while value heatmaps
show the values of a dimension based on the placement of points. If we created a projec-
tion that simply mapped each point to its PCA coordinates through a table lookup, the
value heatmaps would not change whereas the DimReader plots would show nothing

because changing any of the dimensions would not change the projection.
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The DimReader plot for the © dimension shows that changing the u dimension would
move the point along the spiral, from red to blue. The isolines, however, are irregular
from green to orange. These irregularities could be due to the resolution of the grid
or the regularization. One direction for future work is to automatically determine the

appropriate grid resolution and regularization for a projection.

t-SNE In the DimReader plot for t-SNE, the « dimension behaves exactly as we would
expect, increasing as we move from red to blue. The spacing of the lines around the
curve, specifically how the curves are wider on the outside than on the inside, indicates
the bending does not reflect the underlying data but rather is caused by the projection.

In the DimReader plot for v, t-SNE has flipped the green and yellow segment (the
points move to the bottom left rather than the upper right). This appears less clear
from the value heatmap alone.

In the plots for x, the highest values in the heatmap do not match the area in the

DimReader plot where the biggest change occurs.

Interlocked Rings

The DimReader plots and value heatmaps generated for the interlocked rings dataset

are shown in Figure 4.11.

PCA The PCA plots from DimReader show that changing X or Z would move the
points upward and changing the Y dimension move points to the right. Again, the
plots here highlight the difference between our technique and the value heatmaps: the
heatmaps of x and z tell us that the x and z values are only changing over one ring each
whereas our technique is showing that PCA will move the rings vertically if the x or z
dimension is changed. DimReader shows what the projection does, whereas heatmaps

shows where the values go.
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MNIST Digits S Curve

100 200 500 1000 [ 100 200 500 1000
Regular o 33 69 212 884 28 6.0 219 903
DimReader (4 cores) 46 122 539 3144| 3.8 108 548 907.9
Regular eiiEr 05 21 149 796| 0.1 0.6 64 46.5
DimReader (4 cores) 3.7 225 2215 1845.1| 2.5 17.1 210.4 1890.6
Regular e 48 159 911 3574| 00 01 08 37
DimReader (4 cores) 6.5 204 1037 3914 03 06 23 8.3

Figure 4.12: Performance figures for the MNIST digits dataset and the S-Curve dataset,
for progressively larger samples and three different NDR methods. All figures are
reported in seconds.

t-SNE T-SNE has separated the two rings well. In the DimReader plot of the X
dimension, the red ring will move from left to right when the X dimension is changed.
Comparing the X dimension to the Y dimension, for the red ring, the two axes are
nearly perpendicular to one another. This suggests that t-SNE is primarily using these
two dimensions for projecting the red ring. Furthermore, in the red ring the X dimen-
sion changes much quicker than the Y dimension (the lines are closer together) which
indicates that t-SNE is distorting the shape of the red ring. Similar observations can be
made about the green ring with the Y and Z dimensions. Again, the Y and Z are nearly
perpendicular in the green ring. In the Y dimension, the axes change their behavior
when they reach the gap in the green ring. Points in this region move more slowly when
changed which in turn tells us that this is likely a tear in the ring caused by t-SNE that
does not reflect the structure of the underlying data. It is not as clear from the value

heatmaps that the gap is a tear in the data caused by the projection.
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4.4.4 Performance

Known Perturbations

In this section, we report performance figures for the prototype implementation of
DimReader. Although we were reasonably careful with algorithmic and high-level de-
sign decisions that impact performance, we did not make a significant effort to make
DimReader fast. We expect carefully-implemented versions of our proposal in high-
performance languages such as C++ or Java to be significantly faster, possibly by an
order of magnitude (typically the performance difference between Python and aggres-
sively optimized, compiled languages).

A table showcasing typical results is included in Figure 4.12. The performance of
DimReader for a given NDR method is dependent on two main factors: the number
of input points and the overhead incurred by dual numbers. We need to execute a
number of repeated runs proportional to the base-2 logarithm of the number of input
points, and that is essentially unavoidable. We note that for the case of LLE and t-
SNE, the optimizations we described in the previous section make the execution of the
dual-number version of the projection much faster than that of the regular numbers.
As a result, DimReader can extract axes with a relatively small performance overhead.

For cases such as Isomap, on the other hand, where we performed no such optimiza-
tions, the performance of our method suffers a bit. We argue that this is an acceptable
tradeoff: DimReader still works in an acceptable amount of time in the general case,

but more careful implementations can be significantly more efficient.

Discovering Perturbations

The most expensive part of searching for a perturbation is calculating the tangent map.
The tangent map is n*d X n*xd and requires d executions of DimReader to build it. For

datasets with a large number of data points and dimensions, this quickly becomes slow.
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Once we have the matrix, the performance for finding the best perturbation largely
depends on whether or not we can the expanded Laplacian matrix, Lg, (described in
Section 4.4.2) in memory. If we can’t and have to use power iteration, the performance
depends on the speed of our multiplication function as well as the amount of time it
takes power iteration to converge. We did not make a significant effort to increase the
performance for calculating the matrix or searching for perturbations; this remains for

future work.

4.5 Discussion

Can we trust DimReader plots? While we have shown that DimReader can help
determining how NDR plots can be trusted, a natural question to ask is: can the
DimReader plots themselves be trusted? Omne natural scenario in which this comes
up is when perturbation vectors of nearby projections disagree with one another. It’s
always possible to show the vectors themselves as a diagnostic of the quality of the
reconstructed axis lines, but a proper, user-centric evaluation of the settings in which
DimReader’s axes are more informative than naked NDR plots is clearly necessary, and

will be the subject of future work.

Inverse readings DimReader enables interpretation of forward transformations: given
a perturbation of an input and a visualization, DimReader provides an answer. But
a different natural reading is the inverse: given a projected point and a direction of
movement in the projection, what changes in the data could generate such movement?
In principle, the derivative information obtained by autodiff also captures this inverse
relationship [22], but the fact that we are dealing with projections makes the problem

fundamentally harder. A full investigation is beyond the scope of this work.

129



More algorithms, better infrastructure While DimReader shows that it is pos-
sible to adapt a large number of existing NDR methods to run within an autodiff
framework, one goal is to provide DimReader axes to as much existing visualization
infrastructure as practically possible. In such scenarios, reducing the implementation
effort even further would be desirable. The majority of our difficulties porting algo-
rithms to automatic differentiation arose due to difficulties in evaluating derivatives of
linear-algebraic concepts, such as solutions of a linear system and eigenvectors. Some
of these have explicit formulas [93], but incorporating them in an autodiff system ef-
fectively and efficiently is a fundamental challenge beyond the scope of our work. We
note, in addition, that our choice of automatic differentiation is not strictly necessary.
Other methods exist to evaluate function derivatives, including manual derivation of the
expressions. When using DimReader with a specific NDR method, these alternatives
might be more attractive. This might be particularly true whenever approximations of

the derivative can be computed more efficiently than autodiff.

4.6 Conclusion

In this chapter, we identified infinitesimal perturbations as a tool to enable interpreta-
tion of NDR plots, and presented DimReader, a technique that produces generalized
axes for studying such perturbations. While much work remains to be done, DimReader
strikes a favorable balance between generality and power, highlighting strengths and
weaknesses of a variety of NDR methods, and providing a novel perspective into what

NDR methods are actually visualizing.
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CHAPTER 5

CONCLUSION

In this dissertation, we reframed the problem of program debugging and understanding
as a data analysis problem and explored how to employ visualization principles to create
descriptive visualizations of program data. We explored two opposing applications of
this perspective: (1) visualization of general programs and (2) visualization of a specific
class of programs.

We presented Anteater which gathers data from general Python programs via trac-
ing and applies visualization principles to present this data through interactive visual-
izations. Taking this data analysis perspective allows us to break away from traditional
methods and facilitate exploratory debugging and understanding tasks. ProgDiff ex-
tends this work to facilitate comparison between consecutive executions of a program.
It provides a variety of comparative visualizations to enable people to understand the
effects of program changes. Anteater and ProgDiff make no assumptions about the
content of the programs, only that they can be traced. As such, these methods broadly
apply to understanding and debugging any program. On the other hand, because we
make no assumptions about the programs, these methods only answer a limited scope of
general questions for understanding programs. For example, they show us the behavior
of this specific variable value, but cannot answer questions such as “how much does this
variable value influence the value of this other value”?

In contrast, DimReader makes strict assumptions that enable more specific ques-
tions. DimReader assumes that a program takes in a datasest as input and performs
differentiable computations to produce an output. These assumptions allow us to sup-
port a much more specific question of “if the input points changed in this specific way,
how would the output change”. DimReader only supports a very specific type of change,
the infinitesimal perturbation to the input data points, on a specific type of program, di-

mensionality reductions. By constraining the programs in this way, DimReader enables
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the design of richer visualizations for understanding the behavior of these projections
that Anteater could never support in a general way. However, the strict constraints
of DimReader means that other programs cannot employ DimReader and benefit from
the rich, explanatory information it generates.

Each of these applications sacrifices either generality of applicable programs or speci-
ficity of supported tasks. These two present two extreme points in the range of pos-
sibilities in this design space. A such, the question remains, what intermediate design
points exist that provide more generality than DimReader while enabling more specific
tasks than Anteater? Deep learning systems provide a natural next target application.
They encompass a much wider range of programs than DimReader, while readily facili-
tating more complex questions than Anteater. As a result, we can enable more specific
questions about a broader class of programs.

In future work, we will explore how to employ the perturbation analysis from Dim-
Reader to create explanatory visualizations of interactions with deep learning systems.
We will facilitate interaction inject human expertise into deep learning systems. Us-
ing automatic differentiation, we will create explanatory visualizations of the effects of

these interactions on the system.
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