A VISUALIZATION FIRST PERSPECTIVE ON UNDERSTANDING PROGRAM
BEHAVIOR

by

Rebecca Faust

Copyright (©)Rebecca Faust 2021

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2021

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by: Rebecca Faust, titled: [Enter Dissertation Title]

and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of
Doctor of Philosophy.

Date:
Carlos Scheidegger

Date:
Kate Isaacs

Date:
Michelle Strout

Date:

William Bernstein

Final approval and acceptance of this dissertation is contingent upon the candidate’s submission
of the final copies of the dissertation to the Graduate College.

I hereby certify that | have read this dissertation prepared under my direction and recommend
that it be accepted as fulfilling the dissertation requirement.

Date:

Carlos Scheidegger
Dissertation Committee Chair
Computer Science

Acknowledgements

CONTENTS

(1 INTRODUCTIONI

2.3 Characterization of Anteater’s Design|
[2.3.1 A Visualization Perspective on Program Debugging]
[2.3.2 Characterizing Anteater’s System Design|

2.4 Task Analysig|

[2.5 Tracing Infrastructure and Data Organization|.
[2.5.1 Tracing Programs|
[2.0.2 Data Organization|
[2.5.3 Generating Vega-lite Specifications|

[2.6 Anteater’s Visualization Designl00
[2.6.1 Visualizing Program Data]
[2.6.2 Interacting with the Trace Visualizations|
[2.6.3 How to Handle Objects]

277 FBvaluationl. L
[2.7.1 Preliminary Pair Analytics User Study|.
[2.7.2 Comparative Evaluation with an IDE}
[2.7.3 Usage Scenarios|.

[3.3 Classification of Program Changes|
[3.3.1 Source Code Changes|
3.3.2 Trace Changes|,

3.4 ProgDift’s Design|
[3.4.1 Source and Trace Dithngl.
[3.4.2 Comparative Visualizations|

3.5 Usage Scenarios|.

10
12
12
13
13

15
15
19
23
24
29
30
35
35
38
40
40
42
45
49
50
50
56
63
66

[4.3.3 Interpreting DimReader Plots|.

4.3.4 Discovering Good Perturbations|

4.4 Implementation and Experiments |
441 DimReader
|4.4.2 Discovering Perturbations| .
|4.4.3 Synthetic Exampleg

[A.1 Gradient Descent Program|.
|[A.2 Longest Weighted Path Calculation|

[REEERENCES]

95

95

98
102
103
103
111
111
115
115
121
125
127
129
130

131

133
133
134

139

L1sT OF FIGURES

2.1 Comparing Anteater to Existing Practices| 16
[2.2 An overview of the Anteater Ul on a recursive Fibonacci program| 21
2.3 An overview of the Anteater system| 28
2.4 An overview of how Anteater goes from source code to visualization| 36
2.5 An example of Anteater splitting the data by a structural element| . . . 41
2.6 Debugging Gradient Descent with Anteater - betore fixing the bug.|. . . 44
2.7 Debugging Gradient Descent with Anteater - after fixing the bugl 44
2.8 Using Anteater to compare two runs of gradient descent that should |

maximize the minimum crossing angle while minimizing edge crossings| . 61
2.9 Using Anteater to debug longest weighted path calculation| 62
3.1 The original visualizations from Anteater| 71
[3.2 An overview of ProgDiff] oo 71
13.3 ProgDiff’s comparative view of source text|. 76
[3.4 The execution diff of a program after we wrap the initial function call to |

func Amacalltofunc Cl 78
[3.5 ProgDift’s comparative GCT of recursive Fibonacci vs. a GCT that |

recognizes recursive structure.|o o000 Lo 84
[3.6 The comparative histogram views | 88
[3.7 The comparative scatterplot views| 90
3.8 The Anteater views for gradient descent.|. 92
[3.9 ProgDift’s comparative visualizations of the gradient descent program in |

Fig 3.8 . . . o 92
4.1 DimReader explains non-linear dimensionality reduction methods by 1il- |

lustrating the effects ot user-designed perturbations of the input dataset| 96
[4.2 In traditional scatterplots, the grid lines (or axes lines) exist to explain |

what the plot is showingl o000 97
4.3 An overview of DimReaderl oo 98
4.4 Code tor improved perturbation extraction.| 105
|4.5 Histograms of perturbation effect sizes|. 106
4.6 An illustration of the process to recover generalized axes|. 109
4.7 Extracting axes from the Iris dataset with four projections: PCA, Isomap, |

LLE, and t-SNE| 110
4.8 'The best perturbation for the iris dataset| 112
4.9 An overview of perturbations for points in the(A) MNIST digits and (B) |

MNIST fashionl 118
4.10 DimReader axes and value heatmaps for the u,v, and x dimensions of |

the swissrolll 122
4.11 DimReader axes and value heatmaps for the x, y, and z dimension of the |

interlocked rings| Lo 124

|4.12 Performance figures for the MNIS'T digits dataset and the S-Curve dataset[128

L1sT OF TABLES

2.1 A comparison of Anteater with existing work in debugging visualizations| 20
[2.2 'The visualizations supported by Anteater and the SQL queries used to |

create theml 39

[2.3 'Trace information and execution impact for traces ot three of the pro- |

grams discussed in Chapter 2| 64

ABSTRACT

This dissertation re-frames the problem of program understanding as a data analysis
problem: if we can understand the data that exists in a program, we can understand the
program. From this perspective, we apply visualization principles to take a visualiza-
tion first approach to understanding program behavior. In past research, visualization
researchers have crafted a set of principles for creating visualizations that effectively
present data for human understanding. These principles have successfully been applied
when creating visualizations in a wide variety of domains, demonstrating the effec-
tiveness of visualizations created using these principles at presenting data for human
consumption. However, while there exists work in software visualization as well as
understanding programs without visualization, limited research exists on directly ap-
plying visualization principles to the domain of program understanding and debugging.
This dissertation addresses this gap along two primary avenues: (1) using visualiza-
tion to understand general programs and (2) using visualization to understand specific
categories of programs, namely non-linear dimensionality reductions.

Along the first avenue, we present two visualization tools Anteater and ProgDiff.
Anteater defines a mapping from the data collected in program traces to a visualization
design framework that enables us to then apply visualization principles. It defines
how trace data maps to common data structures used in visualization, and how to
map from those data structures to effective interactive visualizations. Anteater then
operationalizes this mapping to create a prototype implementation of a system for
visualizing general Python programs. ProgDiff extends Anteater’s mapping to support
the comparison of multiple executions of a program through visualizations that apply
visualization principles for comparison.

ProgDiff supports visualizing the effects of change in general Python programs.
However, by narrowing the scope to specific classes of programs and specific types of

change, we can create more descriptive visualizations of the effect of those changes.

DimReader is an example of this where we narrowed the focus to non-linear dimen-
sionality reductions. We augmented these programs with automatic differentiation to
simulate changes in the input data and record their effect on the positions of the pro-
jected points. After simulating this change, we applied visualization principles to create
explanatory visualizations for understanding the behavior of the projection.

In this dissertation, we have shown how a data analysis perspective enables the
creation of novel and effective visualizations for program debugging and understand-
ing. We have shown two extreme points in the design space: Anteater and ProgDiff
assume very little structure in the program and apply to very general programs whereas
DimReader assumes structure characteristic of dimensionality reduction programs that
enables the use of automatic differentiation. A natural question remains: given these
two extreme points, how can we find a middle ground that combines the explanatory
features of DimReader with the generalizability of Anteater and ProgDiff? Modern ma-
chine learning systems, specifically deep learning systems, encompass a broader class
of programs while supporting automatic differentiation, thus providing a natural target

for future investigations.

CHAPTER 1

INTRODUCTION

Understanding program behavior is a famously hard problem and encompasses a great
portion of programming time. In a study of live-streamed programming sessions by
experienced developers that ranged from 60-210 minutes, Alaboudi and Latoza, found
that 13-95% of programming time was spent debugging [4]. Because of the substantial
burden of debugging, many researchers dedicate their time to creating new solutions to
alleviate the burden of these tasks. Debugging tasks inherently rely on the inspection
of data within a program, of which a program contains a multitude, both explicit
(e.g. calling structure and variable values) and implicit (e.g. derived values). For
example, when trying to understand the execution path to a specific function call, the
calling structure is of great importance. At its core, the calling structure this is just a
hierarchical data structure generated as the program runs. To understand the execution
path, a person simply needs to analyze this data structure. Data analysis methods
exist for analyzing such hierarchical data structures [75]. This leads to the question,
what does it look like to take a data analysis perspective on program debugging and
understanding?

In this dissertation we re-frame the problem of understanding program behavior
to take a data analysis perspective. From this perspective, if we collect the data from
within a program the only remaining barrier to understanding the program is the ability
to analyze the collected data. Well studied and effective methods for data analysis, such
as the use of visualization, can be employed to help analyze this data. In this work, we
transform programs to collect a variety of data as a program executes. After collecting
the data, we present it for analysis using visualization.

Munzner states that “computer-based visualization systems provide visual represen-
tations of datasets designed to help people carry out tasks more effectively” [88]. We

see many demonstrations of the effectiveness of visualization for data analysis tasks in

10

recent research. For example, Saket et al. evaluate the effectiveness of basic visualiza-
tions on data analysis tasks [103] To present data effectively, visualizations need to be
carefully crafted using an established a set of principles for creating effective visualiza-
tions. At the forefront lies the principle that global views of data are more effective at
illustrating the behavior of a dataset than serial views of textual data. Shneidermann’s
well known mantra of “Overview first, zoom and filter, details on demand” embodies
this principle |[112]. It emphasizes the need for global views as the initial view of the
data with controls to filter to subsets of interest, and view the textual details last.
Anscombe’s quartet famously exemplifies the need for global views to view the entire
behavior of a dataset. It presents a quartet of datasets with identical summary statis-
tics. Viewing the summary statistics alone or inspecting the values individually, does
not necessarily depict the true behavior of the data. In contrast, with visualization we
can quickly and easily see the behavior of each dataset. Anscombe’s quartet emphasizes
the need for global, visual views of datasets to understand the true behavior of data.
This principle of global views drives the way we design data visualizations. Other, more
task specific principles exists that further guide how we design visualizations, such as
principles for creating comparative visualizations. Research shows numerous successful
applications of these principles in a variety of domains. Despite their widespread use,
we have yet to apply them for understanding program behavior. While prior work on
software visualization exists, these works typically adhere to traditional perspectives of
program debugging and understanding, often by adding visualization on top of existing
serial debugging methods.

In this dissertation, we explore how we can enable program understanding tasks

when we take a data analysis perspective and employ visualization principles.

11

1.1 Solutions

We present solutions along two opposing directions. The first direction applies visual-
ization principles to support understanding the behavior of general Python programs.
It facilitates broad, program independent tasks. We present Anteater and ProgDiff in
this direction. In contrast, the second direction applies principles to support under-
standing the behavior of a specific class of programs and program specific tasks. Along
this direction, we present DimReader. DimReader facilitates understanding the behav-
ior of non-linear dimensionality reductions by answering the question “how would the

projection change if our input data changed”.

1.1.1 Anteater

In Chapter 2| we introduce Anteater. Anteater applies the basic principles of visu-
alization to create visualizations that enable program and debugging tasks in general
Python programs. To do this, we first map the data generated by a program as it exe-
cutes and the tasks in program debugging and understanding that rely on this data to
Munzner’s framework for visual design [88]. This mapping identifies the data structures
and types of data generated by a program and how to create effective visualizations of
the program data. Anteater operationalizes this mapping into a prototype debugging
system for Python programs. This system automatically instruments a program to
collect a trace containing the execution structure and desired variable values. It then
presents this data using a variety of interactive visualizations. Anteater demonstrates
the effectiveness of a visualization first approach for general program debugging and

understanding tasks.

12

1.1.2 ProgDiff

In Chapter ProgDiff extends Anteater to support the comparison of consecutive
program executions. In doing so, ProgDiff supports a common debugging practice of
making minor changes and inspecting the effects on the programs execution. People
commonly use this method for tasks such as validating bug fixes and comparing the
results of different parameter settings. Despite the popularity of this method, existing
debugging and understanding methods do not inherently support the comparison of
multiple program executions. ProgDiff extends the mapping defined in Anteater and
applies visualization principles of comparison to support comparative debugging tasks.
It modifies the tracing infrastructure to detect and record changes from the previous
version of the program. After executing the new version of the program, ProgDiff
creates a mapping of the new trace to the previous version, marking the parts that
were added, deleted, or changed. It passes the marked trace to the front-end where
it generates comparative visualizations that highlight the differences between the two

executions.

1.1.3 DimReader

Chapter {4 introduces DimReader. Unlike Anteater and ProgDiff, DimReader only
supports a specific class of programs: non-linear dimensionality reductions (NDR’s).
NDR’s share a common structure: they take in a high dimensional dataset, perform
a series of calculations, and return a two-dimensional representation of the original
data. Narrowing our focus to this class of programs allows us to take advantage of this
common structure and create more descriptive visualizations that rely on this structure.
Like ProgDiff, DimReader focuses on evaluating the effects of change. However, while
ProgDiff supports general program changes, DimReader focuses on perturbations of the

input dataset. By inspecting the effects of perturbations of the input data, we build

13

an understanding of how the input data influences the position of projected points.
Additionally, DimReader does not require the data to be physically perturbed. Instead,
it simulates the perturbation of the data through the calculation of the derivatives of the
projected coordinates. DimReader augments NDR’s with automatic differentiation to
calculate the derivatives of the projected coordinates as the projection executes. Once
DimReader collects the derivatives, it applies visualization principles to create global

visualizations of the effect of the perturbations on the overall projection.

14

CHAPTER 2

ANTEATER

2.1 Introduction

Debugging and understanding program behavior is notoriously one of the most bur-
densome aspects of programming. It often requires programmers to trace through the
execution steps and values of their program. However, most tools require people to build
mental traces of their programs through the serial inspection of program values. Cur-
rent practices often involve stepping through debuggers, inserting logging statements,
or searching through source code, either manually or with a code browsing tool [76].

Additionally, traditional debuggers require programmers to set breakpoints at which
they inspect the program state, stepping through its line-by-line operation. Tiarks
et al. |[121] observed that programmers experience difficulties in choosing breakpoint
locations, often forgetting analysis details while navigating the code. Furthermore,
traditional debuggers only present one view of the program: the whole program state
at a single step in time. While this view has its uses in debugging, it does not help with
bugs that present themselves over time (i.e. bugs where viewing a single instance of a
variable is insufficient for detecting the bug, see Gradient Descent usage scenario). To
detect those bugs, programmers must serially step through the values to build a mental
image of their behavior.

However, this method of incrementally inspecting values to build an internal mental
image of data directly contrasts the fundamental principles of data visualization. Con-
sider the traditional value proposition of data visualization. Visualization practitioners
now have a well-defined set of principles to drive the design, development, and testing
of interactive visualization software [11], [24], [112]. In contrast to inspecting datasets
serially, one element at a time, well-designed visual encodings can provide richer, faster,

and more global views of potentially important patterns.

15

x: 0.21
Manually X: 42
4 Decide Variable Manual Instrument Print X: 94.3
to Print Cod: Values .

= — Effort —= _Yalves s Ix: 37.47
© x: 89.23
© X2 5
=
% RView Printed Values
5 R Step
£ Display Forward
= Collect All play i Deboer
S Set Values at . anPaDshot 9g

Breakpoint Time Step of Program

Breakpoint s, / Timestep 1, ofProgrem x=5
Debugger
Rview Snapshot of Time

— Select Variables Automatically Run Code
8 and Expresslons Instrument . .and Fregte
© _ toTrack | _ Code VlsuahzanonsD
[— 1
=
= Anteater
<< X

R Interact With
Visualizations

Figure 2.1: A programmer investigates a bug in their code. One common practice
(top row) is to instrument the program manually to collect suspicious variables (here,
x), and print their values. Manual instrumentation, however, is itself repetitive and
error-prone. Another common practice (second row) is to use a debugger to stop the
execution of the program and view each individual value assignment of x, providing a
precise, but narrow, one-at-a-time view of the values. Anteater (bottom row) automat-
ically instruments the code to track variables along with the context of their execution.
It presents the programmer with interactive visualizations providing a global view of
values, enabling easy detection of erroneous values as well as interactions that narrow
down the views to specific values.

16

Because traditional debugging methods only provide serial views of program data,
they suffer from the same fundamental problem associated with the serial inspection of
data. The widely used “Visual Information Seeking Matnra”, as presented by Shnei-
dermann [112], states “overview first, zoom and filter, then details-on-demand”. We
have seen numerous successful applications of this mantra to data analysis problems.
However, we have yet to see this applied in a debugging context where serial inspec-
tion of data remains as the primary analysis method. We therefore see a need for an
exploratory debugging solution that provides more effective global views of values, pro-
viding debugging the same set of affordances that interactive visualization provides to
exploratory data analysis.

Consider the following debugging scenario. Programmer Patty has a bug in her
code. Her program returns a value that seems unreasonable. She believes that the
bug is occurring in a specific loop but cannot identify the root cause. Using a typical
debugger, she sets a breakpoint at the beginning of the loop and runs the debugger.
When the debugger reaches the breakpoint, she inspects the program values and takes a
few steps through execution but does not yet see the bug. Patty continues the program
until it hits the breakpoint again at the next iteration, repeating this process. She
continues to step through each iteration of the loop but has little success in finding the
bug.

After several iterations, Patty gives up on using the debugger and modifies the code
with print statements. She prints the variable she believes causes the bug and runs the
program. Patty scans through the printed values, trying to find any erroneous values,
but her loop has many iterations and she quickly gets lost in the print statements.

Her next idea is to write the values to a file and plot them. Patty first alters her
source code to write the values to a file. She then writes a script that reads the file and
plots the values. Now she sees the behavior of every instance of the value and pinpoint

the incorrect values. With this information, Patty returns to the debugger and stops

17

the program when it reaches the iteration containing incorrect values to find the root
cause.

The scenario described above encompasses the typical ways programmers debug
their programs [121]. While not every bug requires all of these methods, programmers
typically use more than one of them. The fact that many programmers use a com-
bination of independent debugging-methods when fixing their programs prompts the
question: can we design a better debugger that 1) reduces the amount of manual in-
strumentation required, 2) gives the users greater control over the values they see, and
3) provides them with a visualization option automatically? While various debugging
tools address aspects of these problems, no existing debugger comprehensively addresses
all of them.

In response to these questions, we present Anteater, a system for debugging and
understanding programs designed with principles of interactive visualization as a driving
concern. We applied the framework for visual design as described by Munzner [88] to
create a debugging system from a visualization perspective. Fig. [2.1] gives an overview
of how Anteater compares to standard debugging practices. In taking a visualization-
first approach, Anteater provides more informative overviews of a program’s behavior
while supporting interaction to dig deeper into the details of the execution. Rather
than showing the whole state at a single step in time, it shows a single variable over the
entirety of the execution. Anteater aims to reduce the effort required from a user by 1)
automatically instrumenting programs to collect the values they want to inspect and
2) allowing them to browse values of interest easily throughout the entire execution,
without resorting to a step-through debugger.

If Programmer Patty had been using Anteater, she could have easily set Anteater
to track the value she believed to be raising issues along with any other values that she
believed to be potential roots of causation. Anteater would then trace her program and

provide her with visualizations to help her identify the iterations where the value was

18

incorrect. Patty could then filter down the execution tree to those iterations and inspect
the rest of the values she tracked. With Anteater, Patty completes all of her debugging
in one place using only a few interactions and requiring no manual instrumentation.
In this chapter, we present a prototype implementation in Python that traces a
Python program to capture not only the execution structure but also values of interest
in context of the execution. Anteater then presents this trace to the user through
interactive visualizations. Fig. [2.2] presents an overview of the visualizations provided

by Anteater.

2.2 Related Work

Literature Search We compare Anteater to work we have found in software engineer-
ing, user interface design, information visualization, and visual analytics. Specifically,
we have searched the last 25 years of work related to visual debugging in the following
venues: ACM ICSE, ACM CHI, ACM UIST, IEEE VIS, and the SoftVis symposium.
The field of software visualization is large and we cannot hope to add every possible
reference; we recommend both textbooks from Diehl and Stasko as starting points into
the literature [38], [115]. Figure gives a general overview of how Anteater com-
pares to common debugging methods and table gives an overview of how Anteater

compares to the relevant existing work discussed in the this section.

Visual Debugging Many attempts have been made to leverage visualization prin-
ciples to augment the debugging process. Some efforts add visualization options to
breakpoint and step-through debuggers [15], [31], [39], [80], [81], [97], [101]. Tradi-
tional visual debuggers typically provide visualization views of variables at a specific
instance in time, much like traditional debuggers. Several of these tools add visualiza-
tions of objects to a traditional debugger [15], [31], [101]. Others provide visualizations

to show task-specific information about the execution, such as an overview of the heap

19

Supported Views Features
Single Whole | e Single | Whole Breakpoint Variable Execu-
Tool Vari- State, Vari- State, g tep) Visualiza- tion Limitations
able, Single able, Whole thr P b tion(s) Struc-
Single Time Whole Time oug (*interactive) ture
Time Time Visualiza-
tion Medium
* Scale
Anteater v v v v Python
Programs
Python
Omnicode " Programs
7ol v v v v v w/ < 10
variables
GDB v v v
Print
Statements v v
Traditional |15], |31],
Visual v v v i) v- 5], |51, |.101] -
Debuggers o7 Eclipse
[15], [31], Plugin
1511, 197],
|101]
Memory Vi-
sualization 8] -
“EI i8] v v v- [| v @, 0 Eclipse
[117] Plugin
Trace Visu-
alization s
ii2l, [58), v v DO\Z{DUZ?CI(
(711, 198],
|123]
Debuggers
< . v v v- 9] v 120],162|, Eclipse
Visualiza- f106]) Pluein
tions [5], [9], st
l20]7 |62|7 l20] - Web7
|106] [62] - Vega
Vega Spec-
[63] v v v v V& ifications

Table 2.1: A comparison of Anteater with existing work in debugging visualizations.
This table contains most references from the Related work section with the exception
of [39], [80], [89], |113] which did not fit into the above categories. In this table, “single
time” refers to a single instance at a specific point in the execution whereas “whole

time” refers to every instance throughout the entire execution.

The colored circles

correspond to views and features that support the goals defined later in this paper.
Note, because of the generality of
capacity and as a result, all features and views support it in some way. When a cell
specifies specific references (e.g. v'- [9] or [62] - Vega) this means that only those
references have the corresponding view or feature.

20

, all systems aim to support this goal in some

@ Fibonacci.py New Trace Upload Trace Upload Log Re-run Trace Traces ~

£ fib(x): =
if x<=2: 10: val = fib(10)
return 1 5: val = ... 5v.. |I
else: Siv.. |
val = fib(x-1) + fib(x-2) : , |

'f L

e I 110111

9~ if _ name__=="_main__": I I I I I I
val = £ib(10)

10

1 print(val)
12

1

1

function

loop

return val

3

o
B Ok Split plots by ~ Clear Filters Plot Options

10: val = fib(10)
5: val = fib(x-1) + fib(x-2)

Plot of “timestamp” vs. “val”
5: val = fib(x-1) + fib(x-2)

5:val =f..

20 °
(]
10- ° °
ok | 0 B0l 6 pelel
00000 00004 | 00008 | 0001z | 0006 | 00020
timestamp

Figure 2.2: An overview of the Anteater Ul on a recursive Fibonacci program, tracking
the variable “val”. (A) shows the UI presented by Anteater (not including (B)). The
generalized context tree (GCT), or icicle plot, shown on the top right side of (A), shows
the structure of the execution trace. The teal blocks represent function calls while the
varying shades of purple represent the value of “val” at that instance. We can see the
recursive calling structure of the Fibonacci function and can easily identify where it is
repeating work. The plot currently shows a scatterplot view of the variable “val” over
time. Brushing over the scatterplot highlights the corresponding instances in the GCT
(the red blocks shown in the GCT on the right side of (A)) and the context bar. The
scatterplot shows repetitive patterns that indicate that Fibonacci is doing redundant
work. (B) shows a second view of the GCT (inset into the image of the main UI) after
we’ve clicked on a block in the tree which caused its dependencies to be highlighted in
red. This shows that the selected block (on the far right of the fifth row in the GCT in
(B)), representing an instance of “val”, depends on the prior two calls to the Fibonacci
function (shown by the two blocks highlighted in red).

21

and stack [2], [81] the impact of resource utilization on control flow [89], object muta-
tion [106], or run-time state and data structures of the program [117].

Generally, these tools present localized views that describe one particular state of
the execution. Some tools provide additional context by allowing back-stepping in the
debugger or providing a history of the execution [51], [80], [97]. In addition, some
tools provide global views to show the behavior of values over the entire execution.
Aftandilian et al. |2] give a global view of the heap by taking snapshots throughout the
program. Schulz et al. [106] provide a global view of object mutations; if the object
is numeric, the global view shows the value behavior throughout the execution. Some
tools give global views of value behaviors by introducing sparklines next to the line of
source code defining the value [9], [62]. In contrast, Anteater displays global views that
take the execution context into account. As we show in our evaluation, this perspective
can be particularly helpful in debugging scenarios.

Hoffswell et al. [63] and Burg et al. [20] describe systems for visually debugging
user interactions, one on Vega specifications and the other on web applications in gen-
eral. Similar to Anteater, both systems recognize the importance of recording program
behavior and providing global views of data to understand the inner-workings of a
program. They differ from Anteater in their focus on debugging interactions with an
application rather than the execution of a program.

Alsallakh et al. [5] created an Eclipse plugin that tracks specific tracepoints (equiva-
lent to a breakpoint in a debugger) throughout a program’s execution. Watchpoints can
also be added to a field on which the tracer will track assignments. The tool provides
global views of tracepoint instances through line charts where interactions provide ad-
ditional information about the program at that point and watchpoints through a step
chart of the values over time. While the plugin’s goals closely relate to those of our
prototype, Anteater stands apart for two reasons. First, Anteater traces all calls and

loops, rather than user-defined tracepoints, along with the values desired by the user.

22

Second, Anteater presents all this information in a trace visualization with correspond-
ing plots of the tracked values. This information can provide the context necessary to
better understand why variables take on certain values.

The most similar tool to Anteater is Kang et al.’s [70] Omnicode. Omnicode pro-
vides run-time visualizations of program states, designed to aid novice users in building
mental models about programs. Crucially, Omnicode visualizes values in a live cod-
ing environment which updates in real time. The primary visualization provided is a
scatterplot matrix displaying plots for each variable over all execution steps. While
Omnicode and Anteater have much in common, they were designed for different audi-
ences (novices vs. general programmers) and thus support different types of programs.

We compare Omnicode and Anteater directly in Section

Trace Visualization Trace visualizations are often applied in support of under-
standing parallel programs [71], [113], [123]. Often, trace visualizations leverage ici-
cle plots and flame graphs as the primary visual representation [12], [58], [71], [9§],
[123]. Anteater uses a visual encoding reminiscent of icicle plots and flame graphs in
our plots of the execution trace, which we will call the generalized context tree (GCT),
after Boehme et al. |[13]. However, Anteater differs in its definition of trace. While
these previous traces capture the calling structure of the execution, Anteater extends
this to capture values of marked variables and expressions, as well as loop behaviors.
This extension provides users with additional context for how values are reached; see

Evaluation for a discussion of their utility.

2.3 Characterization of Anteater’s Design

This section describes the visualization framework used to characterize the problem of
program debugging from a visualization perspective. This perspective drove the design

of Anteater. Additionally, it uses the taxonomy presented by Maletic et al [84] to

23

characterize the system design of Anteater.

2.3.1 A Visualization Perspective on Program Debugging

In this section, we use the framework for visual design described by Munzner [88] to
characterize the problem of program debugging from a visualization perspective. This
was the driving perspective used to create Anteater. The framework consists of 3
parts: (1) what - the data abstraction, (2) why - the task abstraction, and (3) how
- the actual visualization design. This section describes how debugging maps to this
framework, with the following three sections describing in detail how Anteater applies

this perspective.

What - Data Abstraction: First, we need to understand the data involved in pro-
gram debugging. As a program executes, it inherently creates a collection of data.
This data includes items such as the values assigned to every variable, the value of
parameters passed into function calls, the structure of the execution (e.g. calls and
loops), time spent in each part of the program, etc. This data naturally maps to the
data types outlined in the framework. We will focus on a subset of the data generated
from sequential programs: the structure of the execution and the values assigned to
variables. These two forms of data correspond to two data types outlined in Munzner’s
framework.

The first data type is a tree. A sequential programs naturally executes in a hierar-
chical tree structure: the root of the tree represents the entry point into the program,
nodes represent execution steps (e.g. functions and loops), and the parent/child rela-
tionship signifies that the child was executed within the parent instruction (e.g. within
a function call or loop iteration). The tree creates a node every time the program enters
a function call or an iteration of a loop and it creates an edge between each node and

the parent function or loop that contains its instruction. In Munzner’s framework, this

24

corresponds to the data types node and link and the dataset type network/tree. Addi-
tionally, each function call and loop contains additional attributes, such as the source
code line that corresponds to its instruction, the name of the function, the value of the
iterator for the loop, etc.

The second data type is a table. The values of program variables naturally organize
into tables. Each instance of a variable is a data item (a row in the table) that contains
several attributes that describe it (the columns in a table). To construct these tables,
a program must create a record every time the program assigns to a variable. The at-
tributes associated with a variables assignment include the line at which the assignment
occurred, the node in the execution tree that contains that assignment, the actual value
of the variable at that instance, etc. This clearly corresponds to table dataset in the
framework, with the item and attribute data types describing the entries in the table.

Anteater uses this data abstraction to create a visual representation of a program.

We describe the generation of this data with Anteater in more detail Section [2.5

Why - Task Abstraction Now that we understand the data abstraction, we need
to understand how the data analysis actions and targets outlined in the framework map
to the domain of program debugging.

The high-level goal of debugging is to discover the source of unexpected or erroneous
program behavior. This behavior could either stem from misbehavior in the execution
structure (e.g. a function not being called as expected) or misbehavior in the variable
values (e.g. an incorrect calculation), or both. When debugging, programmers often
inspect the programs data to generate a hypothesis about why the program is misbe-
having or to validate an existing hypothesis about a bug. In Munzner’s framework,
this goal falls into the consume action of the analyze category. Additionally, this goal
corresponds to the overarching aim of Anteater.

The framework allows us to separate the high-level goal of discovering unexpected

25

program behavior into 4 mid-level actions that correspond to the programmers prior
knowledge of the bug: lookup, locate, browse, and explore. These actions fall into the
search category of Munzner’s framework. First, a programmer may know precisely
what to look for and where to look for it (corresponding to the lookup action). For
example, if through prior debugging efforts they identified and corrected a calculation
error, they may then re-execute the program to lookup the new value to ensure that it
is correct. In this case, they know exactly what they are looking for and where to find
it in the program data.

Second, a programmer may know what the bug is but not where it is occurring
(corresponding to the locate action). For example, if a programmer knows that their
program is producing an erroneous output value, they know that somewhere in the
execution an erroneous value is assigned to the variable but they don’t know precisely
where.

Third, a programmer may know the general location of a bug, but not precisely what
is causing it (corresponding to the browse action). For example, a program deviates
from the expected execution path at line x but the programmer cannot immediately
see what causes the deviation. They must browse the program data around this point
to understand the behavior of the program at that point.

Fourth, a programmer may not know where the bug is or what is causing it (cor-
responding to the explore action). For example, a program finishes running but does
not return from the expected point in the program. The programmer must explore the
program data to locate where the program returns from and why it returns from this
point instead of the expected point.

At the lowest level of action exist the query actions. These actions correspond to
specific ways in which a programmer might query their program data for a debugging
tasks. While performing a lookup or locate action where the programmer knows what

variable or function call causes a bug, the may identify the specific instance of that call

26

or variable to inspect all of the information collected about that instance. In contrast,
when performing a browse or explore action, programmers want to identify areas in the
program data that deviate from their expectations. A programmer may also want to
compare the values of two variables to understand or verify an expected relationship
between them. Last, for observing trends or patterns and identifying potential areas of
erroneous behavior in variables or the execution structure, programmers may want to
summarize the data with global views of the data.

The targets of these actions may be trends, outliers, or features of variable values
or execution structure that highlight the misbehavior. They may also be correlations
between variables that are perceived to be related or the distribution of a single variable.
When identifying unexpected execution structure, the target may be the topology of
the execution tree and paths through the tree that correspond to the execution stack
of the program.

Anteater provides interactive views of both the execution structure and variable
value data that allow people to perform these actions on program data. Global views of
the program value allow people to browse, explore, and summarize the data. Interactions
on the global views allow people to narrow their view to perform lookup and locate
actions. The ability to plot multiple variables on a single plot allows people to compare

variables.

How - Visual Design With the data abstraction and task abstraction defined, all
that remains is creating visualizations of the data that facilitate the specified tasks.
While there exist numerous options for creating visualizations of this data, we will
focus solely on those supported by Anteater. We will not go into detail about the visual
design here but will give a high level description of how Anteater’s visualizations map
to the framework. A full description of the visual design can be found in Section [2.6

The framework breaks up visualizations into four classes: encode, manipulate, facet,

27

(@) (b) (c)

Source Code, Back-End

Variables and
Expressions Front-End Trace

#instrunented program

toTrack Specification Trace Specification def f(x,y):
> Anteater: Trace > > (Antealer'Tra(er) N x = sin(x) * 2
Creator T - ;”;;%i”"‘)‘"’m@“” recordvariable("x",x, timestamp)
of f(x,y):
Web Instrumented x = sin(x) =2 Becomes return x + y
Interface SIS return xty if __name__=="__main__":
Anteater: Create i — in " recordCallStart(f,timestamp)
User Y 4 _nene_==r_ain_"" recordCaLStart (F
(python) = fi. recordCallEnd (¥, timestamp)

JSON Trace File:
values in the z = callTemp
context tree o

Visualizations _Visualizations / QL Database
& of Trace

Interactions

(d)

Figure 2.3: An overview of the Anteater system. In (a), a user chooses variables and
expressions to track using the Anteater interface. This defines the trace specification.
Then, Anteater sends the trace specification through the web interface to the python
backend, along with the source code. Next, in (b), the Anteater tracer instruments the
source code to collect execution information along with the specified values. (c) shows
a simplified version of this instrumentation. After the code is instrumented, Anteater
runs the program using python to create the program trace. This trace is passed back
through the web interface to the Anteater front end where (in (d)) it is visualized and
presented to the user.

and reduce.

Anteater encodes the data using color and arrangement. For variable values, de-
pending on the type of variable, Anteater arranges the data tables into histograms,
barplots, scatterplots or parallel coordinates. Anteater arranges the execution tree into
an icicle plot to illustrate the hierarchical structure of the execution and creates a color
map to signfiy the type (function call, loop, etc.) of each block in the icicle plot.

Anteater allows programmers to manipulate the data through selections on the
plots and execution tree. This enables them to connect the two views and inspect
specific values in the visualization. Programmers then can reduce the data by filtering
their selections to exclude irrelevant information.

Last, Anteater allows programmers to facet their data by partitioning it using a
shared structure in the execution (such as a repeated function call or loop iterations)

or related values from the program (such as a related boolean variable).

28

2.3.2 Characterizing Anteater’s System Design

Several taxonomies exists for characterizing program visualizations [84], [94], [99], [110],
[116]. While any of the taxonomies can apply to Anteater, we use the taxonomy from
Maletic et al. [84] to describe it because we believe that it best characterizes Anteater
with respect to the systems goals. This taxonomy breaks program visualizations into
5 dimensions: Tasks, Audience, Target, Representation, and Medium. We discuss each

of these dimensions individually in the remainder of this section.

Tasks The task dimension, as specified by Maletic et al., defines why the visualization
is needed. Most standard debugging tools and methods lack support for global visual
representations of the data internal to programs. They rely on serial approaches of
inspecting a single instance of the data at a time. However, serial inspection of raw data
tasks people with the significant mental burden of building an internal representation
of an entire dataset [88]. Furthermore, because humans have a very limited ability to
recall prior values when serially inspecting data, this internal representation suffers from
inaccuracies caused by forgetting or misremembering past data. As Munzner stated,
“Vis allows people to offload internal cognition and memory usage to the perceptual
system” [88]. It does so by creating an external representation of the data that humans
can comprehend more easily.

Anteater aims to create a debugging system that shifts the perspective from debug-
ging programs through several serial views to take the previously described visualization
first perspective on debugging. It focuses on giving programmers an overview of the
data within their program first and then providing them tools that allow them to delve
into the details as desired. The “Task Analysis” section provides a more in depth

inspection of the goals of Anteater and the tasks necessary to support those goals.

29

Audience The audience dimension defines who will use the visualization. Anteater
aims to help python programmers understand their programs and diagnose misbehav-
ior’s in the programs they are running. While our prototype currently supports the
visualization of program traces of a moderate size (around 225,000 recorded function
calls and variable assignments), we believe that the design of Anteater is appropriate

for general programming tasks in Python.

Target The target dimensions defines what aspects of the program are visualized.
Anteater creates a trace as the program executes. Anteater focuses on collecting internal
program values, such as variables and expressions, throughout the entire execution of
the program. Additionally, these traces capture the calling and looping structure of

the execution. The details of the tracing infrastructure of Anteater are discussed in

Section 2.5

Representation This dimension defines how to convey the target information to the
user. Anteater leverages well understood visualizations of each type of data collected
to present the data to the programmer in an easily understandable way. It then pairs
these visualizations with interactions that allow people to filter down to areas of interest
in their program values and view details as desired. The visual design is discussed in

depth in Section [2.6]

Medium The medium dimension defines where this information is displayed. We

intend Anteater to be displayed in color on a laptop screen or an external monitor.

2.4 Task Analysis

In this section, we discuss Anteater’s goals. The original inspiration for our goals came

from Omnicode [70] and the Coz profiler [36]. We further refined our goals after ex-

30

ploring additional related work, characterizing the problem with Munzer’s framework,
and reflecting on our own experiences with respect to program debugging and under-
standing. The final goals below were derived after several iterations of system design

and goal refinement.

When program-
mers write and execute programs, they have some expectation of how their program
should be behaving, e.g. what functions should be called and when. As a result, one
goal of debugging is to identify what is causing an execution to deviate from what the
programmer expected. To support this goal, debugging tools need to provide a view
of the execution structure (see Features column of Table [2.1). Furthermore, this goal
encompasses the subset of the search actions identified in the previous section that
correspond to understanding the execution structure of a program. For example, a
programmer may want to lookup a specific function call, locate an erroneous function
call, browse a specific area of the execution structure, or explore the overall structure

of the execution.

G2: Identifying the source of unexpected values and trends Similar to ,
programmers typically have a general ideas about what variable values they should
observe during the execution of a program and thus desire to identify the root cause of
unexpected values in the execution. To help programmers identify patterns and trends
in the values of a variable, tools need to provide views of variables over the entire exe-
cution of the program. This corresponds to the “Single Variable, Whole Time” column
in Table In addition, keeping these values in context of the execution structure,
allows programmers to isolate areas of interest in the execution. Whereas encom-
passes the subset of the search actions corresponding to understanding the execution

structure of a program, this goal encompasses those corresponding to understanding

the internal variable values of a program. For example, a programmer may want to

31

lookup a specific instance of a variable, locate an erroneous variable calculation, browse
instances of variables at a particular point in the execution, or explore the overall trends

of a variable throughout the execution.

This goal encompasses a wide range of exploratory debugging and understanding tasks.
We designed it to be general enough cover any programming situation that did not fit
into the first two goals. For example, programmers are often tasked with understanding
code written by someone else. Typically, this is no easy task and requires a significant
amount of effort on the part of the programmer. Viewing the structure of the execution
along with trends of variables throughout the entire execution serves as a starting
point for understanding the behavior unfamiliar code. Similarly, programmers use well
known but complex analysis algorithms that they write but do not fully understand
how the algorithm operates. Understanding these algorithms is a difficult task that
requires effort similar to understanding code written by someone else. This goal aims
to encompass programming tasks like these. All debugging and understanding tools
attempt to support this goal and as a result, all views and features described in Table
support this goal. This goal encompasses the subset of the search actions corresponding
to understanding the general behavior of a program. This goal often corresponds to the

explore and browse actions where the target is not concretely defined.

Under the framework of Lam et al. [74], falls into the “Discover Observation”
category and and G2, fall into the “Identify Main Cause” category. From these

goals, we derived several sub-tasks required to support the goals.

T1: Inspect all instances of a variable or expression It is often useful to look
at all of the values that a variable or expression takes on to determine if it is behaving

as-expected and to identify any erroneous values (supporting (G2). Additionally, in an

32

unfamiliar or complex program, it helps create a general understanding of the variables
behavior (supporting (:3). This task corresponds to the low-level actions summarize
(e.g. view the trends of a variable) and identify (e.g. inspect an erroneous value) as

described in the previous section.

T2: Identify what functions are called at runtime Often it is not clear from
the static source code which functions will execute and when. However, identifying
which functions are actually called during an execution is crucial for understanding
how a program is operating (supporting (:3) and identifying unexpected execution
behaviors (supporting (:1). Providing an overview of the execution (corresponding to
the summarize action) allows people to see which functions are called at runtime and

allows them to isolate misbehavior (corresponding to the identify action).

T3: Identify dependencies for a variable Understanding dependencies is crucial
when trying to understand the behavior of a program. Identifying how a value is
calculated, including the execution path required to complete the variable’s calculation,
allows programmers to better understand the underlying nature of the value in question
(supporting (:3). Such insight can lead to finding the cause of an unexpected value
(supporting G2). This task supports the identify action in relation to viewing the

dependencies of a specific instance of a variable.

T4: Identify interesting subsets of values Given a variable or expression, it is
important to be able to identify the subset of values that correspond to interesting
behavior. For example, if certain values indicate a failure in the program, they need to
be identified so the surrounding values can be examined to understand the cause of the

behavior. This task supports G2 and as well as the identify action.

33

T5: Observe relationships between values When debugging a program, pro-
grammers often investigate relationships between variables (supporting the compare
action). For example, if variable x changes, how does variable y change? While these
relationships may not be explicitly defined by the code, i.e., y may not directly depend
on x, they often provide meaningful information to the programmer. Uncovering such

relationships contributes to program understanding (supporting (:3).

T6: Maintain context between runtime state and static source When trying
to debug and understand a program, maintaining context with the actual code is critical.
If the programmer is manually instrumenting print statements, they also must codify
contextual information to derive insight, e.g., representing the location of a variable’s

modification. This task supports (-1, G2, and

A system that supports all of these tasks needs to track the execution structure of the
program along with variable and expression values in the context of its execution. An
execution trace fits this need as it naturally tracks the execution structure of a program
and can be modified to also collect values. Once a system collects this data, it must
present it in a way that allows for easy navigation through the data while supporting the
defined tasks. We argue that visualization best way presents this information because it
is known for providing overviews and context, highlighting relationships, and facilitating
the filtering down to subsets of interesting information, all of which are needed to
support these tasks. Anteater takes a visualization approach to program debugging and
understanding that satisfies these goals through execution traces and visualizations.
Currently, Anteater deals solely with single-threaded programs but we expect that
this task analysis would need to be extended to satisfy our goals for multi-threaded

programs.

34

2.5 Tracing Infrastructure and Data Organization

To support the goals and tasks defined in above, an execution trace with accompanying
variable and expression values must be collected. Anteater implements a tracer that
automatically instruments source code to collect its execution trace. Implemented in
Python, the tracer relies solely on the Abstract Syntax Trees (AST) to facilitate the
transformation of the source code. While Anteater currently only works with Python
programs, the same principles can be implemented in any language that has the ability
to transform source code in a similar way. After transforming the source code, Anteater
runs the program, generates the trace file, and organizes the data in a way that allows for

easy creation of interactive visualizations. Fig. illustrates how the system operates.

2.5.1 Tracing Programs

This section goes into depth on part (a) and (b) of Fig. First, it discusses how people
can specify traces through the Anteater front-end. Then, it discusses how Anteater

turns this trace specification in to program trace.

Specifying a Program Trace To fulfill T1 (inspect all instances of a variable or
expression), Anteater allows programmers to define which variables and expressions to
track, through interactions with the source code. Additionally, to eliminate unimpor-
tant functions form the trace, people may specify functions and libraries to exclude from
the trace. Together, these two pieces create a trace specification. This corresponds to
part (a) of Fig Anteater also allows people to define additional custom expressions
associated with their chosen variables that it evaluates and records each time it records
the corresponding variable.

Anteater best supports numerical values but has limited support for strings and

boolean values. While it cannot directly visualize lists and matrices, information about

35

@Source

def fib(x):

else:

val = fib(x-1) \
+ fib(x-2)

return val

if _name_=="_main__
val = fib(10)
print(val)

Trace

@Relational Representation of Trace @Vega—lite Spec

Tracked:

[id [var] name[lineno] time [val

parent[iter|

id":8

"parentBlockID": 7,
"func_name":"fib",

“body"{

{"type":"assign’,

"lineno":

[11 [true| val 5 |oooo1| 2

null|

[13Jtrue] val 5 o000 3

null|

Block:

Function_name:

id [type [lineno] time [parent

id[name

1| cl | 10 Joooooi| o

1| fib

"id" 11,

+0.0001,

KID": 8,

7 [l | 5 Joooo02] 6

7] fib

8 | call |

5 [000003] 7

8] fib

{"$schema": "https://vega.github.io...;,
" (-

"Plot of timestamp vs. val”

point’,

"timestamp',

"brush”: {"type": "interval"}},
": "poi led": true},

®Anteater Plot

P
T

>
o0

000

Plot of “timestamp” vs. “val”

. ¢ _ o . .
0308 NoeRNoePrd N oenR e

Gioe | ooha | odne
timestamp

oo

"quantitative",
"name”:"val’, ype': "linear'},
"val"2 “axis": {"title": "timestamp'}

3] 2

Figure 2.4: An overview of how Anteater goes from source code to visualization. (A)
shows the initial source code. We are going to track the variable “val” After instrument-
ing the source code, as demonstrated in Fig. The instrumented program creates
a trace cell as shown in (B). Anteater then puts the JSON into a SQL table as shown
in (C). From there, Anteater queries the table to select all points from “Tracked” that
have the name “val” and passes them to Anteater’s Vega-lite generator which generates
a Vega-lite specification (as shown in (D)) for the corresponding plot. Anteater then
renders the specification to create a scatterplot of those points over time (shown in

(E)).

either structure can be tracked using custom expressions (see Section . Once the
programmers complete the trace specification, Anteater passes it to the tracer in the
backend for processing.

Note, the tracer will only collect the variables and expressions defined in the trace
specification. We explicitly chose to do this because collecting the entirety of data
associated with every variable in the program leads to the collection of massive traces
filled with a significant amount of irrelevant/unnecessary data. Many variables residing
in code have little importance in describing the program’s behavior. Thus, Anteater

allows the user to select the important variables to track. We discuss this decision more

Section 2.8

Anteater’s Tracer When a user chooses to create a trace, the Anteater back-end is
passed a trace specification containing a list of variables and expressions to track and
a list of functions and libraries to exclude from the trace. The tracer indexes through

these lists and determines the scope in which each item resides to ensure that it only

36

tracks/excludes the specified items. For example, if two disjoint functions both define
variable x, the tracer will only track the one the user selected.

Once Anteater determines the scope of each item, the tracer uses the Python ast
library to parse the source code into its AST. It then performs a series of traversals of
the AST to collect information about the source code and transform the program to
trace the execution and desired values.

In the first traversal through the AST, no transformations occur. Rather, Anteater
collects information about functions, loops, and dependencies. For functions and loops,
it collects the lines at which the function definition or loop begins and ends. This in-
formation enables more detailed linking between visualizations and source code. For
dependencies, the tracer traverses through the code and, for each variable, stores func-
tions and variables on which it directly depends in the source text.

Once all of the static data has been retrieved from the source code, Anteater begins
transforming it. A second traversal through the AST transforms the code to isolate
all function calls from their respective expression statements and expand list compre-
hensions into for loops. Anteater pulls all function calls that do not stand alone out
of their expressions and assigns them to a temporary variable that replaces the call in
the original expression (e.g., x = 2 % f() becomes tempF = f(); x = 2 x tempF'). This
allows Anteater to easily capture when and in what order functions are called.

Next, the tracer performs the main transformations to insert the instrumentation
that collects the trace. As the tracer traverses the AST, it always pauses at assign-
ment, call, and loop nodes. When it reaches an assignment node, it checks the trace
specification to determine if the target variable needs to be tracked. If so, it inserts
new nodes into the AST that record the value of the variable after assignment.

When the tracer reaches a call node, it first checks if the trace specification excludes
the function. If not, the tracer wraps the call with AST nodes to record the entry into

and exit from the call. A simplified example of this transformation is shown in Fig. [2.3

37

(c).

When the tracer reaches a loop, it creates a counter to track the iteration of that
loop and inserts new instrumentation to record the start of the loop. As it traverses
the body of the loop, any time the tracer creates a new record, it records the iteration
in which that record occurred. Tracking the iteration binds together groups of records
in the trace that occurred in the same part of the execution (i.e. records that occurred
in the same iteration).

Lastly, the tracer transforms the program to record expressions. Unlike variables,
expressions occur in a variety of AST nodes. As the tracer visits each node, it checks
if the line containing the node also contains a tracked expression. If it does, the tracer
isolates the expression from the line, assigns it to a temporary variable, and then re-
places the expression in the original line with the temporary variable. This ensures that
the expression only executes once and that the trace records its exact behavior during
the execution of the program.

Once Anteater completes the instrumentation, it compiles the AST into an exe-

cutable program, which generates the trace as it executes.

2.5.2 Data Organization

Fig illustrates how we go from the source code to visualizations. After Anteater
instruments the source code, it runs the modified program and creates the trace file.
Anteater writes the raw trace as a simple JSON file, shown in Fig. [2.4](B). This allows it
to easily capture the hierarchical structure of the execution as well as record data about
program blocks as attributes in the corresponding JSON block. Anteater then passes the
trace to the front-end. While convenient for collecting the trace, JSON is less convenient
and flexible for querying the trace which limits the range of possible visualizations
and interactions. To support more complex visualizations and interactions, Anteater

converts the JSON trace into a SQL database.

38

Data Type Plot Type Query
Q Histogram SELECT
N Bar plot SELECT
QxQ Scatter SELECT, JOIN
QxQxQ... | Parallel Coordinates SELECT, JOIN
N, Q, QxQ | Small Multiples | SELECT, JOIN, SORT ON

Table 2.2: The above table shows the current visualizations supported and the SQL
queries used to create these visualizations. We use “Q” for quantitative data and “N”
for nominal.

As shown on the right side of Fig. (d), Anteater converts the JSON trace into
SQL tables. The primary two tables store (1) the attributes of the nodes in the execution
tree (the “block” table), and (2) the attributes of all instances of tracked variables and
values (the “tracked” table). Fig[2.4 B-C demonstrates how to convert form JSON into
the corresponding SQL tables.

Additional tables exist, such as “function_name” and “for_loop” that store additional
information about certain types of blocks. The “custom” table stores the values of
custom expressions that are collected alongside the variables and expressions selected
in the source code.

Converting the trace to SQL yields several advantages. First, querying becomes
much simpler. For basic visualizations, we now must simply write a SELECT statement
to gather all instances of a tracked variable. To filter instances, we can simply add
a WHERE clause to the SQL statement. Similarly, joining two variables becomes much
simpler through the use of JOIN. Table shows a table of visualizations supported by
Anteater and the corresponding SQL query keywords used to collect the data.

Second, Anteater supports any visualization for which there exists a SQL query to
select the appropriate data. In other words, forming the proper query becomes the only
restriction to the range of possible visualizations. While the current implementation
only supports a few visualizations, we could easily extend it to support others.

The last advantage comes from the decoupling of the visualizations and the data

39

representation. The specification of the visualizations does not inherently depend on
the representation of the data. A SQL query simply returns a list of datapoints for
Anteater to use in the visualization. Because of this, we easily adapted Anteater to use
Vega-Lite [104] specifications to generate visualizations. Furthermore, new visualiza-
tion implementations can be plugged in with minimal effort to adapt them to fit into

Anteater. This further increases the extensibility and flexibility of Anteater.

2.5.3 Generating Vega-lite Specifications

As mentioned previously, a SQL query simply returns a list of datapoints. Anteater
then simply needs to generate a Vega-lite specification appropriate for the specified data
(the final step of Fig.[2.3[(d)). A snippet of a generated specification is shown in Fig.
(D) with the corresponding plot in (E). Leveraging the power of Vega-lite allowed us
to easily create clean, interactive visualizations that are customized to best present the

data selected by the programmer.

2.6 Anteater’s Visualization Design

Anteater presents a new way of exploring and interacting with program executions
helping users to gain a deeper understanding of the inner-workings of their programs
that they cannot get from traditional tools. In the previous section, we discussed
how Anteater creates the execution trace. Here, we describe the visualization design
of Anteater and the features that facilitate the exploration of the execution trace.
As we walk through the design, we will describe the features in context of a simple
Python program that runs a recursive Fibonacci function. In addition, we use Yi et
al.’s categories of interactions [131] to classify our interactions and further validate our
design. Anteater uses Vega-lite to generate all visualizations, with the exception of the

generalized context tree.

40

function

loop

194: g.mark_critical_path() distiu][0] +

149: critical_path = multigraph_dag_lon... data[0].get(weight,
166: for v in nx.topological_sort(G): Sl el
I
0.00002 18

@;ﬁﬂ Split plots by ¥ Clear Filters Plot Options

Boxplot of dist[u][0] + data[0].get(weight, default_weight) split on “for” at line 167
2.0+

1 ==

0.5

0.0

T 1
00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 10511.0

instance of “for” at line 167

dist[u][0] + data[0].get(weight, default_weight)

Figure 2.5: An example of Anteater splitting the data by a structural element. Anteater
splits the data by instances of a for loop at line 167, which corresponds to iterations of
the loop at line 166 (the selected block in the generalized context tree). The plot shows
one boxplot per loop instance.

41

2.6.1 Visualizing Program Data

Once the tracer returns the execution trace, Anteater generates interactive visualiza-
tions. Two types of visualizations are provided: a view of the execution structure, which
we call the generalized context tree, and a visualization of the variable values. For ease
of use, Anteater provides well understood visualizations of the program information but

can be easily extended to support more complex/custom visualizations.

Generalized Context Tree

The generalized context tree (GCT), shown on the right side of Fig. A and in Fig.
[2.2}B, provides an overview of the execution structure. The visualization has its origins
in flame graphs and icicle plots. We chose this type of visualization because it is well
known and understood for visualizing traces. In our setting, each rectangular block in
the plot represents one of three things: a function call, a loop, or a variable assignment.
The icicle plot shows the hierarchy so that, for a given block, everything that is within
that blocks bounds below it, is a child which means it executed within the code of the
parent block (i.e. in that call or loop iteration). For example, in Fig. A, the block

7

in the second row labeled “10: val = ...” is the initial call into the Fibonacci function
and everything below that happens within that call. The generalized context tree can
be used to determine which functions executed and when, fulfilling T2 (identify which
functions are called at runtime).

As we move from left to right in the plot, we are increasing in time; everything to
the left of a block was fully executed before that block. This allows users to easily read
the visualization and understand when blocks are executed relative to other blocks.

The GCT highlights a single variable corresponding to the variable on the x-axis
of the plot. When the user assigns a variable to the x-axis, the GCT colors all blocks

in the tree corresponding to that variable (which reside at the leaf level) by the value

42

of the corresponding instance. Positive values range from white (low) to purple (high),
while negative values range from white (least negative) to orange (most negative). In
Fig. 2.2} A, Anteater colors the leaf nodes representing the variable “val” with varying
shades of purple. Deeper leaves are shaded much lighter, which indicates small values at
those instances; this corresponds to the deepest Fibonacci calls returning the smallest
values. Coloring blocks in this way shows the behavior of values in the context of
the whole execution. Every other variable or expression that appears in the trace still
appears in the generalized context tree but Anteater colors them gray to keep focus on
the selected variable.

Before creating the GCT, Anteater must organize the data into a hierarchy that
it then passes to the D3 library to generate the visualization. To organize the data
into the hierarchy, Anteater starts at the root block that represents the whole module
and queries the database for all of its child blocks. It then adds these blocks as its
children to the hierarchical data structure and repeats this process for each child block.

In essence, this re-builds the tree in a manner similar to depth first search.

Variable Value Plots

The second visualization provided by Anteater, is a plot of tracked variables. Similar to
when creating the trace specification, programmers add tracked variables and expres-
sions to the plot by right clicking and selecting to add it. Anteater queries the database
to retrieve the specified variables. When Anteater initially reads in the trace, Anteater
checks each tracked variable and expression to determine its type (quantitative or nom-
inal). Thus, when creating a plot, Anteater first checks the data types of each involved
variable before looking up the plot type appropriate for the selected variable(s) (based
on Table. Once Anteater determines the correct plot type, it begins generating the
Vega-lite specification. Initially, it creates the base layer that sets the mark for the plot

(bar, point, line, etc.) and plots the initial data. In this layer, Anteater performs any

43

Before Bug Fix

34: 1 = grad_descl(2, 2) 34: x,x1 = grad_desc(2, 2)

15: while iterations > 0: 15: while iterations > 0:

(AR (MANURARMMARN 1 ADNATOA
e

lallo Spit plots by = Clear Filters Plot Options L?_i Splt plots by = Clear Filters Plot Options, li Split plots by~ Clear Filters Pt Options
Plot of x vs. timestamp Plot of x vs. timestamp Plot of x vs. timestamp
é . L S pr—— ’.".-‘,r'
S +| com——————
£, R— x o g T
< « e oo,
N — o,
g — N— RN
e N . - T T I T T S T timestamp
timestamp

Figure 2.6: Debugging Gradient Descent with Anteater. In (A) it is immediately appar-
ent in both the generalized context tree and the histogram that there is a bug causing
NaN’s, shown in green in both the histogram and GCT (NaN means “Not A Number”,
special floating-point values that indicate numerical failures). In (B), we switch to the
scatterplot view to see how the values behave before they become NaN. The values are
mostly centered around zero before becoming an extremely small negative, then going
to infinity and becoming NaN. We suspect that the values centered around zero are
not actually zeros so we filter the values in the scatterplot to allow us to zoom in on
them and switch to a symmetric log scale, shown in (C). Now we see that the values
are oscillating which suggests the problem of exploding gradients caused by a training
rate that is too large. Fig. shows the Anteater visualizations after correcting the
bug.

After Bug Fix

34: x,x1 = grad_desc(2, 2) *

15: while iterations > 0:

| |
e

po Split plots by ~ Clear Filters Plot Options

Plot of x vs. timestamp

N

§ 8 3 & 8 8

0000 0001 002 00 0004 0®S 0006 0007 08 008 0010 00n 0012

timestamp

Figure 2.7: Debugging Gradient Descent with Anteater. The plot and generalized
context tree after we correct the bug from Fig. [2.6] To correct the bug, we reduce the
training rate and can see that the value quickly converges as expected.

44

necessary filtering and transformations (e.g. aggregation for histograms and filtering
out non-numeric values in quantitative data such as “NaN” values). If quantitative
variables have non-numeric values Anteater will concatenate additional subplots (hor-
izontally or vertically depending on which variable contains the values) to show these
values. Vega-lite allows Anteater to sync the axes of the subplots with the main plot
in the base layer, as in Fig. A and B. This builds the base visualization for the

specified variables.

2.6.2 Interacting with the Trace Visualizations

Anteater’s interactions are key in helping users get a better understanding of their
program. We organize our interactions based on Yi et al.’s categories of interaction:

Select, Explore, Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect.

Select and Connect Anteater provides interactions that connect related views in
the following way: interactions to link the generalized context tree and the plot view
(in both directions) and interactions to link the visualizations to the source code. Addi-
tionally, the interactions linking the generalized context tree to the plot view also serve
to select portions of the execution data that are of interest.

Anteater provides interactions on the plots and the GCT to link the two together.
When a user selects a block in the GCT, the values shown in the plot filter down to
include all values in the subtree rooted at the selected block. In addition, to provide
global context, the plot shows the values from the subtree rooted at the parent of
the selected block. As shown in the histogram in Fig. 2.9}B, Anteater colors the bar
representing the selected instance(s) blue while the coloring rest of the bars gray for
context. In the scatterplot, it colors the points representing selected instances while
leaving the rest gray. Anteater also provides linking from the plot back to the GCT.

In the histogram, selecting a bar highlights the corresponding blocks in the tree, as

45

shown in Fig. 2.9}A. In the scatterplot, brushing over a set of points highlights the
corresponding blocks in the trees, as shown in Fig. 2.2}B where the red blocks in the
tree correspond to the brushed points. Anteater enables these selections by adding
specific parameters to the Vega-lite specification. These parameters specify the type of
selections available (e.g. brushing or clicking) and the visual effects of the selections (e.g.
changing color or opacity of unselected points). Furthermore, Vega-lite’s data listeners
allow Anteater to monitor these selections and update linked views accordingly. These
interactions support T4 - identify interesting subsets of values - by allowing the user to
pinpoint interesting values in the plots and locate them in the execution.
Additionally, when exploring the execution, it is important to connect back to the
source code to maintain the context of the execution. On its own, the generalized
context tree is fairly abstract. To provide necessary context, when the user selects a
block in the generalized context tree, the source code jumps to, and highlights, the
corresponding section of the code. If it corresponds to a function call whose definition
resides in the source file, it also highlights the corresponding function. This interaction,
paired with a preview of the corresponding source code on the blocks, supports T6 -
maintain context between runtime state and static source - by allowing users to navigate

the execution trace without forgetting their place in the source code.

Explore Anteater supports two “explore” interactions: faceting values into groups
and inspecting dependencies.

The first interaction, faceting values into groups, enables people to view distinct
subsets of a variable. Anteater provides grouping capabilities that allow the user to facet
the data into groups and create either a series of box and whisker plots on the same axes
(one for each group) or small multiples of plots. The data can be split on either a related
variable /expression from the trace (such as a boolean value) or a repeated structure in

the execution, such as a loop, where each instance of the structure contains multiple

46

instances of the tracked variables/expressions. For example, in Fig. Anteater splits
the plot on the outer loop and creates a box and whisker plot for each instance of the
inner loop.

The second “explore” interaction supports the inspection of dependencies. To sup-
port T3 (identify dependencies for a variable), Anteater determines what dependencies
could exist for any instance of a variable. To find all dependencies for a variable,
Anteater accesses the variables dependency list generated during tracing, and then, for
each dependency in that list, it accesses their dependency lists. This continues until
Anteater builds a comprehensive list of all possible dependencies.

After creating the list of dependencies, Anteater uses context from the execution
trace to eliminate some possibilities and present the remainder to the user. When a user
selects a block in the generalized context tree that represents a variable, Anteater checks
2 sets of blocks: (1) any siblings of the selected block that were fully executed before it
and (2) the siblings of all ancestor blocks of the selected block that were fully executed
prior to the selected block. From these sets of block, Anteater finds any blocks that are
on the list of possible dependencies. For any block that is on the list, it is highlighted
in the generalized context tree to show the user the user on which parts of the context
tree that selected block depends. This allows the user to quickly get an idea of which
entities may contribute to that specific instance. In Fig. 2.2}B, the selected instance of

“val” depends on the prior two calls to “fib”.

Reconfigure Anteater supports reconfiguration by allowing users to add multiple
variables to a plot (supporting T5 - observe relationships between values). If the vari-
ables are compatible, Anteater plots them against each other in either a scatterplot
or parallel coordinates (depending on the number of variables), allowing the user to
observe their relationship. Compatible variables share a common ancestor and have

1-1 instances within that ancestor. Anteater provides an options menu that allows

47

programmers to swap or change the scales on axes using the “Plot Options” menu.

Encode Depending on the type of data presented, Anteater allows people to encode
the data in a multiple ways. People can click on the icons above the plot to switch
between the different plot types available for that datatype. Additionally, Anteater

gives them controls to rearrange the axes of the plots as well as change the scales.

Filter Anteater supports three types of filter interactions on the plot and the gen-
eralized context tree to help people filter out unimportant information and emphasize
important parts of the execution, which helps support T4 (identify interesting subsets
of values). The first type of filtering was mentioned above where clicking on deeper
nodes in the context tree filters the value plots. Through this interaction, users can
filter down the plot to interesting subsets of the data.

In the scatterplot, users can brush over a subset of points, right click, and select to
filter out the values not in their brush. Anteater then removes all other points from the
plot, effectively zooming in on selected points, and grays out any block not on the path
to a shown point. Examples of this can be seen in Fig. 2.6C and Fig. 2.9}C. Similarly,
in a bar plot or histogram, users can select bars and filter down to the corresponding
values in the same manner.

One last way users can filter the visualization is by hiding parts of the generalized
context tree. Right clicking on a block in the tree will expand the block to take up the
entire width of the interface, increasing the size of all of its children and thus making
them easier to see. However, in doing this, users might lose context of where they
are exploring with respect to the execution. To retain this context, we add a smaller,
grayscale version of the generalized context tree with a highlighter bar over it. When
the user zooms in on a block, the highlighter narrows to indicate its place in the overall
context tree. It also highlights the selected block in yellow, as well as any other blocks

that are highlighted in the generalized context tree (from dependencies and brushed

48

values). This allows users to see highlighted blocks even if they are outside of the
visible portion of the generalized context tree. In Fig. we zoomed in on the loop
at line 166, but we see our location with respect to the whole generalized context tree

in the context bar.

2.6.3 How to Handle Objects

While Anteater will not directly collect objects, it provides a way for users to collect the
information that interests them from the object. To do this, the user locates the place
in the program where they wish to inspect the object. At this point, they choose to
create a custom expression for Anteater to record that accesses the data in the object
that interests them. Each time the execution reaches this point, Anteater will evaluate
and record the value of the expression. This enables users to indirectly gather all of
the information from objects that they wish to inspect without directly collecting the
entire object.

The central challenges with collecting entire objects are the detection of every mod-
ification to the object and visualizing all information within an object. The first chal-
lenge would require Anteater to detect every time the object is mutated and record the
new state of the object. Not only is the detection a difficult task, but the collection of
all mutations of the object will inevitably lead to unmanageably large trace files. The
second challenge would require additional input from the user on how to design the
visualization of the object given the information it contains. Rather than have users
create their own visualizations, Anteater has them select the data they want to visualize

from objects ahead of time and then creates the visualizations for them.

49

2.7 Evaluation

We evaluated the efficacy of Anteater’s framework through a preliminary user study, a

comparative study and a series ofusage scenarios.

2.7.1 Preliminary Pair Analytics User Study

User affordances offered by and the development status of a visualization prototype are
key factors to steer the design of a user evaluation study [42]. In the case of Anteater, we
do not intend to validate the scalability or usability of its interface and architecture (see
Discussion). Similarly, we do not evaluate users ability to complete the tasks defined
earlier using Anteater. Rather, we found it more appropriate to validate Anteater’s
visualization first approach to debugging and the exploration processes that Anteater
facilitates. In particular, we wanted to observe the use and utility of global views of
program values offered by Anteater in the program exploration process. Hence, we
chose pair analytics [7] an appropriate user evaluation protocol.

Pair analytics offers a “think-aloud” protocol that helps generate verbal data by
capturing the natural interaction between study participants and the proctor using the
visualization interface as a communication anchor. Using the pair analytics method, a
team is formed between a study proctor (or a visualization expert) who helps navigate
Anteater and a subject matter expert who drives the exploration/debugging efforts.

We chose this evaluation over other methods for multiple reasons. First, this ap-
proach allows the subject matter expert to focus less on the nuances of the visual-
ization interface (e.g., interaction types, loading data, etc) and more on exploration
and question-answering processes. Other methods require participants to thoroughly
learn an entirely new system before completing any tasks. The overhead of learning
the nuances of a new system requires a significantly longer study session. Additionally,

Anteater is a prototype implementation. Having a proctor to assist in the navigation

50

of the tool provides immediate assistance on how to proceed in the event that a sys-
tem problem arises in the prototype. Second, a comparative study where experienced
programmers complete debugging tasks with Anteater as well as with existing methods
not only requires a significant overhead for learning the new system but also must miti-
gate the bias introduced by participants predisposition towards their current debugging
practices. We discuss this more in the next study.

The exploratory nature of this study combined with the pair analytics protocol
allows us to mitigate the bias of a participants predisposition to their current practices
and reduce the overhead of learning and using a prototype system while still evaluating

the utility of Anteater in exploratory debugging/understanding tasks.

Methodology

Participants Participants were recruited from a graduate level “Principles of Ma-
chine Learning” course. All participants are actively involved in computer science
research, use Python as their primary programming language, and consider themselves
experts in Python. We believe that the debugging and understanding tasks of programs
written by graduate students in an upper level machine learning course or their research
are comparable to those in real world data analysis programs.

We recruited a total of 5 participants from the class, which had a total of 20 students.
However, only 3 of the studies were carried out to completion. We discarded one of
these studies because the participant provided a program with a known bug that they
thought might be interesting to re-discover with Anteater. While the subject matter
expert’s program was appropriate for the user study, we thought the prior knowledge of
the participant would bias the study’s outcome. As a result, we promoted this program
to a usage scenario and discuss it in a later section. We discarded another study because
the programs presented by the participant were not a good fit for the study. They do,

however, highlight some of the limitations of Anteater and are discussed in more detail

o1

later.

Study Session Process For each study, we recorded screen capture data along with
audio recordings of each interview. Participants were asked to bring their own program
to the study. All participants brought a program that performs some form of data
analysis. Allowing them to choose their program helped alleviated some of the mental
overhead of the study by not requiring them to learn a new program, along with a
new debugging tool. Furthermore, this kept participants in their domain which enabled
them to perform more meaningful explorations of their programs with Anteater.

Participants engaged in two sessions with the proctor. Due to the current policies
in place in the U.S. at the time the study was conducted, all sessions were held online
rather than in person, as would typically be done. Anteater’s primary developer served
as the study proctor to assist participants with navigating the nuances of Anteater and
prompting them with questions to describe their exploration process.

The first session, was a brief meeting to introduce the participant to Anteater and
discuss the participants program. The proctor and participants discussed what the
participant wanted to see from within their program. After the first session, the proctor
ensured that the program was suitable for the study and that the participant could view
what they desired by testing it in Anteater. If the program was suitable, participants
were asked to meet for a subsequent session.

In the second session, the proctor walked participants through the various features
of Anteater. Afterwards, participants began exploring their programs with Anteater.
The study gave participants free reign of their exploration, they were not given specific
tasks to accomplish. In doing this, their behavior with Anteater exemplified more
precisely how they would use a system like Anteater in their actual program debugging
and understanding practices.

During the second session, the proctor served two primary purposes. First, to mit-

52

igate the overhead of learning a new system, the proctor assisted participants in navi-
gating the features of the tool. Prompted by verbal cues from participants, the proctor
would remind participants how to accomplish tasks within Anteater. Second, akin to
other pair analytics evaluation studies, the proctor freely asked questions to promote
exploratory thinking. In effect, participants’ answering of such questions helped distill
internal cognitive processes that were qualitatively analyzed.

For the participants who completed the study, the second session lasted between
60 and 90 minutes. Approximately the first 30 minutes of each session was spent
introducing the subject matter experts to Anteater and getting Anteater set up to run

properly on their machines.

Results

From this study, we found that, even in its imperfect prototype state, Anteater was
useful to participants for debugging and achieving a better understanding of their pro-
grams. All participants were able to learn something new about their program that they
previously had not understood. For the sake of confidentiality, we cannot give specifics
about the programs used by participants. However, we try to give some context in the
form of general concepts found in data analysis programs.

The first participant (P1) knew a bug existed in their program causing it to run
incorrectly, but had yet to find it. With the proctor’s guidance, P1 leveraged Anteater to
identify and fix the bug (which aligns with G2 above). Through the use of the timeline
plot and the ability to track custom expressions on more complex data structures (which
corresponds to T1 - track a variable or expression), P1 found the bug, fixed it, and then
verified that the revised program ran properly. During the exploration process, P1
discovered that there was something unusual about the training dataset, denoted as
the whole dataset, which is split into left and right, vital to the proper execution of

the program. P1 correctly noticed the problem since “the right dataset and the [whole]

53

dataset cannot be the same” even though the scatter plot showed them as identical
(T5 - observe relationships between values). Upon further investigation of the captured
values in each dataset, P1 explained that the “right dataset ... points to [the] class
dataset” which causes them to overwrite the whole training set with only the right one.
After modifying the code, a new trace was run and P1 validated the proper behavior of
the code. After being asked if they were “able to gain new insight into [their] program
using Anteater,” P1 answered that “the scatter graph and also the tracking values
[were] very helpful.”

The other two participants (P2 and P3) presented more open-ended cases. P2 and
P3 did not have known bugs, but rather non-trivial data analysis programs whose
execution was not fully understood (which corresponds to). In both cases, the
timeline view of certain variables over time was crucial. P2 heavily relied on the timeline
and filtering capabilities of Anteater to verify that their program was converging as
expected. P2 also used the timeline and filtering feature to inspect if their program was
reaching the extremes of its search space. Using the visualizations provided by Anteater,
P2 discovered that the program did not search the entire space in one direction and
searched beyond the bounds in the other direction. After completing their exploration,
P2 commented that understanding “why the values are so far off from the [search space]
is a good next thing to look at.”

P3 also heavily relied on the timeline view. They used it to understand the behavior
of a set of weights in their analysis program. Before their use of Anteater, P3 had
little idea of how the weights behaved throughout their program’s execution. Anteater
allowed them to track and visualize the weights over time to see how they evolved as
the program ran. After they inspected the weights, the participant commented that
“[Anteater| completely helped [them] understand sort of the underlying domain thing
of what was going on with the weights.” P3 further explained that Anteater was able to

show that the program “is converging on one particular feature as an important weight

o4

and the rest [are seen as| super unimportant.” Through the use of Anteater, P3 was
able to understand the behavior of the weights relative to the domain for which the
program addressed, specifically through the use of the visualizations. The ability to
visualize the variables over time was key to P3 understanding this behavior.

We believe our observations in this preliminary study provide promising evidence
towards the utility of a visualization first approach to exploratory program debugging
and understanding. P2 and P3 both performed exploratory tasks for understanding
their programs and heavily relied on the global plots of values from within their pro-
gram and interactions with those plots to improve their understanding of the programs
behavior. In a post exploration interview, all participants indicate that they were able
to gain new insight into their programs: P1 by finding their bug and P2 and P3 through
understanding the behavior of certain values. Similarly, all participants expressed that,
if a polished and optimized version were available, they would like to use a system like
Anteater for future programming tasks.

As mentioned earlier, we discarded one evaluation study, because the programs
provided were not ideally suited for the objective of the evaluation. The participant
initially brought a large, machine learning program that took approximately a week to
run. This program was not a good fit since we do not aim to study the interaction
between trace size and applicability of our approach, but rather the utility of our
approach to real Python programmers. A program that takes a week to run will generate
a trace too large to handle by the current implementation of Anteater. Admittedly, this
does limit the generalizability of Anteater, but we consider the study of how to scale a
system like Anteater for future work. The participant then provided several small-scale
programs that we were also not ideally fit for the study. The first of the programs
was a small multi-threaded program. However, Anteater does not currently support
multithreading. The other two programs were linear programs (no loops) with only 20-

40 function calls and variable assignments where the code was broken into several small,

55

independent parts. These programs are similar to those found in an introductory CS
course. This study aimed to use programs similar to those that would be found in a real
data analysis setting. The small-scale programs were simply not sufficiently realistic
for the study. As a result, rather than asking them to provide additional programs, we

omitted their case from the study.

Threats to Validity

Because our sample size was small, the results, while promising, can only be considered
preliminary. We designed the study to keep participants in their domains as much as
possible to preserve the ecological validity of the study. In doing so, we could get deeper
insights into users exploration processes and the results would better reflect real world
utility of Anteater’s design. However, a full scale study to further validate the design
and utility of Anteater needs to be conducted in future work.

In addition, the pair analytics protocol could potentially introduce bias into the
study if the proctor becomes too heavy handed in driving the exploration. In this
study, the goal of the proctor is not to drive the exploration, but rather to aid the
user in understanding the nuances of the system. Their primary role was to observe the
participants as they explored their programs, point them to the features of Anteater that
would help them answer their questions, and prompt them with additional questions

to provoke thought about the findings presented by Anteater.

2.7.2 Comparative Evaluation with an IDE

Our preliminary study aimed at evaluating how programmers use Anteater in their
exploratory debugging and understanding tasks. We found that the approach of pro-
viding global views of program values at the forefront was useful for our participants in
completing exploratory program understanding tasks. In a second study, we attempt

to compare how participants debug with Anteater vs a more traditional IDE debugger.

56

In this study, we asked people to complete two debugging tasks, one with Anteater
and one with an IDE. We then prompted them with questions about their experiences.
The goal of this study was not to evaluate how efficiently or accurately participants de-
bugged programs. Rather, we aimed to evaluate how people interact with each system
and contrast their experiences. However, over the course of the study we encountered
several challenges to conducting an evaluation of this type. These will be discussed

more in the following sections.

Methodology

Using recent technology that brings the Python library into the browser [96], we de-
veloped a version of Anteater that runs entirely in the browser and does not require a
python server back-end as in the prior version. Thus, in contrast to our preliminary
study, participants were able to complete this study entirely in the browser, without
any assistance from a proctor or system expert. Participants were asked to complete 2

debugging tasks: one with Anteater and one with an online Python IDE.

Participants Throughout the course of the study, we conducted two rounds of re-
cruiting participants.

The first round of recruiting was conducted by advertising the study to relevant
groups of research and data analysis professionals. As an incentive for completing the
study, participants were entered into a drawing for a $100 Amazon giftcard. We chose
this method of recruitment because we believed that these groups of professionals would
have the experience to provide focused and meaningful feedback. We kept the study
open for 4 weeks. However, we were only able to recruit 4 participants in this first
round. As a result we conducted a second round of recruitment.

In the second round of recruiting, we recruited participants through the recruitment

service Prolific. To ensure that our participants had the proper experience, Prolifc al-

o7

lowed us to specify that participants must have programming experience. Additionally,
in the description of the study, we specified that they must have Python programming
experience. However, despite this specification, several participants indicated that they
were novices with Python, which may have impacted their ability to complete the given
debugging tasks. These participants tended to provide the least meaningful responses.
Through prolific, we recruited 9 participants. Participants were paid $10/hour to com-
plete the study.

Of the 13 participants, 4 rated themselves as Python novices (have never used
Python before or are currently learning it), 6 as intermediate (use Python sometimes,
but not as a primary language), and 4 as experts (use Python regularly as a primary
language).

Participants were asked to provide the purpose of their primary programming ac-
tivities. 4 of the participants indicated that they primarily program for coursework, 7
indicated that the program for software development and 2 indicated that they program
for data science/analysis.

Participants were also asked about their current debugging practices. 8 participants
indicated that print statements were part of their debugging process, 8 use breakpoint
debuggers, and 6 participants use a mix of the two. 3 participants did not provide

descriptive responses.

Study Setup During recruitment, we gave participants a link to a webpage describing
the study purpose and format. If participants chose to start the study, they were taken
to a Google form to where they were they were shown an instructional video on how
to use Anteater and then given two debugging tasks to complete, one with Anteater
and one with an IDE. Participants were asked to debug the program either until they
found the bug or until 10 minutes lapsed. We wanted participants to try to debug the

program but, in the event that they could not find the bug, we did not want to ask

o8

them to spend more than 10 minutes trying. After each debugging task, participants
were asked a series of questions about their experiences. Upon completing both tasks,
they were asked a series of questions to compare their experiences and evaluate the

design of Anteater.

Debugging Tasks The study asked participants to complete two debugging tasks.
Both tasks involved computing the number of polling places per capita for every state in
the US from a dataset containing the population and number of polling places for each
county in the country. One of the debugging tasks (D1) generated erroneous (negative)
values due to an off by one error when indexing a list that separated each state in the
data by inserting a value of -999. The second debugging task (D1) generated similarly
erroneous values due to an unclean data file that represented missing values with -999.
Participants were presented the two tasks in random order and each task was randomly

paired with either Anteater or the IDE.

Results

Overall, the reception of Anteater was generally positive, especially since this was par-
ticipants first exposure to the system.

Of the 13 participants, using either tool, only 5 were able to confidently find D1 (4
were unsure and 5 did not believe they found it) and only 2 were able to confidently find
D2 (7 were unsure and 4 did not believe they found it). This indicates that the bugs we
introduced, while seemingly simple, were likely too complex for this type of study. This
exemplifies the first challenge we encountered in this study: introducing sufficiently
small but realistic and meaningful bugs that are identifiable in a short period of time.
We carefully developed these bugs and tested them in a pilot study to ensure that they
were not too complex. However, despite this, it seems our bugs were still to complex.

Additionally, several participants cited that the recommended time limit of 10 min-

99

utes for each task was not enough to learn Anteater and complete the debugging task.
One participant noted “I felt like anteater was aiming towards a feature I would find
useful, but also only having 10 minutes of time with it, it certainly wasn’t effortless
to figure out and I suspect I missed some possible chances to take better advantage of
1t.”. This highlights the second challenge we encountered: overcoming the overhead of
teaching participants an entirely new system while still keeping the study a reasonable
length. Most participants took at least an hour to complete the study with the 10
minute time limit. Given the offered compensation, we did not feel that would could
ask for more time than that. However, it seems that this was not enough time for
participants to learn the nuances of the system.

After completing their debugging tasks, around half of the participants (7 out of 13)
indicated that they would prefer a production ready version of a system like Anteater
over an IDE. One participant cited “Anteater seems like it would be more effective for
the targeted debugging style that I tend to follow, i.e. focus on a few specific variables or
expressions, and investigate them deeply (and being able to do it visually isn’t something
supported in anything ['ve seen!), as opposed to the way the IDE just gives me cluttered
lists of numbers for everything, even if I already know they’re not important.” Another
participant cite that Anteater “remowves the careless of skipping the thing that we wanted
to find (odd values)” that happens when stepping in IDE debuggers.

Of the 6 who preferred traditional IDE’s, 4 of them cited that they preferred the
IDE and print statement debugging simply because they are accustomed to it. One
participant cited “I'm just more used to the traditional IDE, it’s debugging paradigm
makes sense in my head. Anteater introduces a whole new paradigm of debugging, which
I could imagine to be useful, but I'm just not used to it”. Another stated that Anteater
“provides a lot more information about what’s happening with the problem, but I think it
does not replace the phase of using convenient prints and proper testing to check what’s

exactly the problem”. This exemplifies one of the largest challenges that we encountered

60

num_intersections

Figure 2.8: Using Anteater to compare two runs of gradient descent that should max-
imize the minimum crossing angle while minimizing edge crossings. The generalized
context trees in (A) show that the number of intersections rapidly decreases (the color
changes from dark purple to white) while the minimum angle increases. The scatterplot
shows that the descent spends its first few steps at a bad solution and takes approx-
imately three big steps before converging on a good solution. In contrast, in (B) the
number of intersections increases throughout the descent while the minimum angle de-
creases. The scatterplot shows that, in general, as the number of intersections grows,

Shown variable: num_intersections

710: X _curr = optimize (X_curr)

II 296: while 1: I

Shown variable: min_angle

710: X curr = optimize (X curr)

II 296: while 1: “

Plot of min_angle vs. num_intersections

8 T v v v T v
02 03 04 05 08 8

07 o8 os
min_angle

timestamp

%‘Z

num_intersections

Shown variable: num_intersections

710: X _curr = optimize (X curr)

|296: while 1: II

Shown variable: min_angle

710: X curr = optimize (X curr)
“296: while 1: I

Plot of min_angle vs. num_intersections

—_—

N

2

U‘S 0‘7 0‘5 0‘9 1‘0 1‘! 1’2 1‘3 |,4‘
min_angle

the minimum angle shrinks and lands at a bad solution.

61

194: g.mark critical_path()
149: critical_path = multigra...

v in nxtopolo...
I

166: for |
[NANN [l

194: g.mark_critical_path()
149: critical_path = multigraph_dag_longest_path(self.G)
166: for v in nx.topological_sort(G):

194: g.mark _critical_path()
149: critical_path = multigra...
166: for v in nx.topolo...

Split plots by~ Clear Filters ~ Plot Options

tplots by~ Clear Filters ~Plot Options

Bar plot of “v.get_label()” + data[0] Bar plot of “data”

default_weight)”

Clear Filters ~ Plot Options [loln

_ Count of Records

Count of Records.

Count of Records

) of *di
dist[u][0] + data[0].get(weight, default_weight) data

(B) (@)

AR

v.get_label()

(A)

(0ot 0.00; wope: 1 953529949477503005, orc. o0 Fale), (bl 500, WeGhe 5010

Figure 2.9: (A) shows how we can use the bar plot to find where the barrier node occurs
in the execution plot. (B) shows the weights of the paths to the barrier node calculated
in the program. We see that none of them are 5, as we expect from looking at the MPI
call graph. (C) shows the data used to calculate the path weight that should include
the edge of weight 5. We see that the data does include this edge but the algorithm
does not look at it. For more details, refer to the supplemental video.

during this evaluation: overcoming experienced programmers predisposition to their
current debugging practices. One participant strongly stated that “I find prints the
way of God”. Several participants felt that Anteater would be useful but they did not
want to change their current debugging practices. However, two of these participants
commented that they think the features of Anteater would be useful if integrated into an
IDE. One participant stated “The best combination would be to integrate Anteater in a
classical IDE in order to have the best of both worlds”. We found this a very encouraging
comment for validating Anteater’s visualization first approach to debugging and will

explore this possibility in future work.

Threats to Validity

While the first round of targeted recruitment produced more meaningful results, there
is the potential for bias due to the participants potential familiarity with the authors.
Although the study was anonymous, we recruited participants from groups with which

the authors are affiliated. It is possible that participants were more generous with their

62

responses than they would have been if they did not know the authors but we have no
way of detecting this.

In the second round of recruiting, we were unable to properly screen participants
through Prolific. In order to maintain the validity of the study, we did not modify
the protocol when extending the recruitment to Prolific. However, it seems that the
study would have benefited from additional efforts to screen participants Python and
professional experience. In Prolific, we were only able to specify tha