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Fig. 1. A programmer investigates a bug in their code. One common practice (top row) is to instrument the program manually to collect
suspicious variables (here, x), and print their values. Manual instrumentation, however, is itself repetitive and error-prone. Another
common practice (second row) is to use a debugger to stop the execution of the program and view each individual value assignment of
x, providing a precise, but narrow, one-at-a-time view of the values. Anteater (bottom row) automatically instruments the code to track
variables along with the context of their execution. It presents the programmer with interactive visualizations providing a global view of
values, enabling easy detection of erroneous values as well as interactions that narrow down the views to specific values.

Abstract—Debugging is famously one the hardest parts in programming. In this paper, we tackle the question: what does a debugging
environment look like when we take interactive visualization as a central design principle? We introduce Anteater, an interactive
visualization system for tracing and exploring the execution of Python programs. Existing systems often have visualization components
built on top of an existing infrastructure. In contrast, Anteaters organization of trace data enables an intermediate representation which
can be leveraged to automatically synthesize a variety of visualizations and interactions. These interactive visualizations help with
tasks such as discovering important structures in the execution and understanding and debugging unexpected behaviors. To assess
the utility of Anteater, we conducted a participant study where programmers completed tasks on their own python programs using

Anteater. Finally, we discuss limitations and where further research is needed.

Index Terms—Interactive Visualization, Program Traces

1 INTRODUCTION

In this paper, we tackle the following questions: when we take in-
teractive visualization principles as a driving concern, what novel
designs are possible for debugging systems? Can interactive visu-
alization offer unique benefits for program debugging? Debugging
is time consuming, and current practice often involves stepping through
debuggers, logging statements, or searching through source code, either
manually or with a code browsing tool [25]. Traditional debuggers re-
quire programmers to set breakpoints at which they inspect the program
state, stepping through its line-by-line operation. Tiarks et al. [39] ob-
served that programmers experience difficulties in choosing breakpoint
locations, forgetting analysis details while navigating the code.
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Consider the traditional value proposition of data visualization. Vi-
sualization practitioners now have a well-defined set of principles to
drive the design, development, and testing of interactive visualization
software [6, 10, 34]. In contrast to inspecting datasets serially, one
element at a time, well-designed visual encodings can provide a richer,
faster, and more global views of potentially important patterns. The
same fundamental issue of serial inspection is present in traditional
debugging. We therefore see a need for an exploratory debugging so-
lution that provides more effective global views of values, providing
debugging the same set of affordances that interactive visualization
provides to exploratory data analysis.

Another common problem users face when programming is that of
making sense of unfamiliar code [39]. Whether programs are pulled
from the internet, handed off to others by a collaborator, or existing in a
just-joined project, sifting through code to understand its execution and
determining where to start working is challenging. Something as simple
as identifying the dependencies of a variable can become a significant
burden when the program is large. There is a need for facilitating a
deeper understanding of the structure of a program’s execution to assist
programmers in exploring how functions, variables, and values depend



on one another.

In response, we present Anteater, a system for debugging and under-
standing programs designed with principles of interactive visualization
as a driving concern. In taking a visualization-first approach, Anteater
provides more informative overviews of a program’s behavior while
supporting interaction to dig deeper into the details of the execution.
Anteater aims to reduce the effort required from a user by 1) automati-
cally instrumenting programs to collect the values they want to inspect
and 2) allowing them to browse values of interest easily throughout the
entire executing, without resorting to a step-through debugger.

We present a prototype implementation in Python that traces a
Python program to capture not only the execution structure but also
values of interest in context of the execution. Anteater then presents
this trace to the user through interactive visualizations. In summary,
this paper contributes (i) a goals-and-tasks analysis [24] of the typ-
ical practice of program debugging, (ii) a description and prototype
implementation of Anteater in Python, aimed at providing first-class
interactive-visualization support to program debugging and understand-
ing, (iii) a paired analytics evaluation of the prototype and its analysis,
and (iv) case studies of real-world programs that show how our system
compares to existing approaches.

2 RELATED WORK

Literature Search We compare Anteater to work we have found in
software engineering, user interface design, information visualization,
and visual analytics. Specifically, we have searched the last 25 years
of work related to visual debugging in the following venues: ACM
ICSE, ACM CHI, ACM UIST, IEEE VIS, and the SoftVis symposium.
The field of software visualization is large and we cannot hope to add
every possible reference; we recommend both textbooks from Diehl
and Stasko as starting points into the literature [13,37].

Visual Debugging Many attempts have been made to leverage
visualization principles to augment the debugging process. Some efforts
add visualization options to breakpoint and step-through debuggers [9,
11, 14,26, 27, 30, 32]. Others show task-specific information about
the execution, such as an overview of the heap [2], the impact of
resource utilization on control flow [28], object mutation [33], or run-
time state and data structures of the program [38]. Generally, these
tools present localized views that describe one particular state of the
execution. Some tools provide additional context by allowing back-
stepping in the debugger or providing a history of the execution [16,
26,30]. Aftandilian et al. [2] give a global view of the heap by taking
snapshots throughout the program. Schulz et al. [33] provide a global
view of object mutations; if the object is numeric, the global view
shows the value behavior throughout the execution. Some tools give
global views of value behaviors by introducing sparklines next to the
line of source code defining the value [5, 19]. In contrast, Anteater
displays global views that take the execution context into account. As
we show in Section 7, this perspective can be particularly helpful in
debugging scenarios.

Alsallakh et al. [3] created an Eclipse plugin that tracks specific
tracepoints (equivalent to a breakpoint in a debugger) throughout a pro-
gram’s execution. Watchpoints can also be added to a field on which the
tracer will track assignments. The tracepoint instances are visualized as
individual line charts where interactions provide additional information
about the program at that point and watchpoints are viewed as a step
chart of the values over time. While the plugin’s goals closely relate
to those of our prototype, Anteater stands apart for two reasons. First,
Anteater traces all calls and loops, rather than user-defined tracepoints,
along with the values desired by the user. Second, Anteater presents all
this information in a trace visualization with corresponding plots of the
tracked values. This information can provide the context necessary to
better understand why variables take on certain values.

The most similar tool to Anteater is Kang et al.’s [22] Omnicode.
Omnicode provides run-time visualizations of program states, designed
so that novice users build mental models about programs. Crucially,
Omnicode visualizes values in a live coding environment which updates
in real time. The primary visualization provided is a scatterplot matrix
displaying plots for each variable over all execution steps. While

Omnicode and Anteater have much in common, they were designed for
different audiences (novices vs. general programmers) and thus support
different types of programs. We compare Omnicode and Anteater
directly in Section 8.

Trace Visualization Trace visualizations are often applied in sup-
port of understanding parallel programs [23, 35,40]. Often, trace visu-
alizations leverage icicle plots and flame graphs as the primary visual
representation [7,18,23,31,40]. Anteater uses a visual encoding rem-
iniscent of icicle plots and flame graphs in our generalized context
tree. However, Anteater differs in its definition of trace. While these
previous traces capture the calling structure of the execution, Anteater
extends this to capture values of marked variables and expressions, as
well as loop behaviors. This extension provides users with additional
context for how values are reached; see Section 7 for a discussion of
their utility.

3 BACKGROUND

In this section, we discuss the current state of program debugging, un-
derstanding, and tracing, as well as the need for a system like Anteater.

3.1 Understanding Programs

The situation frequently arises where a programmer needs to understand
code they did not write. Navigating unfamiliar source code is not an
easy task and there are no tools designed specifically to facilitate such
understanding. Several articles and blog posts exist to help program-
mers effectively read source code [12,20]. Much of this help, however,
consists of generic advice only. One article advises programmers to
run the program first then find something the code is doing and trace
it backwards. Another advises to use a debugger to set breakpoints
and find a tool that allows for more intelligent navigation through the
source code, such as Sourcegraph [36] and Pycharm [21].

From these posts, it seems that a programmer’s best tools for un-
derstanding unfamiliar code are debuggers, print statements, and those
designed for source code navigation. With only these tools to help un-
derstand code, programmers must expend considerable effort to carry
out several burdensome tasks. Those tasks include 1) finding a starting
point for navigation, 2) setting breakpoints to step through debuggers,
and 3) making small changes to the program to better understand the
impact on the execution.

3.2 Debugging Scenario

Programmer Patty has a bug in her code. She believes that the bug is
occurring in a specific loop but cannot identify the root cause. Using
a typical debugger, she sets a breakpoint at the beginning of the loop
and runs the debugger. When the debugger reaches the breakpoint, she
inspects values and takes a few steps through execution but does not
yet see the bug. Patty continues the program until it hits the breakpoint
again at the next iteration. She continues to step through each iteration
of the loop but has little success in finding the bug.

After several iterations, Patty gives up on using the debugger and
modifies the code with print statements. She prints the variable she
believes is causing the bug and runs the program. Patty scans through
the printed values, trying to find any erroneous values, but her loop has
many iterations and she quickly gets lost in the print statements.

Her next idea is to write the values to a file and plot them. Patty
first alters her source code to write the values to a file. She then writes
a script that reads the file and plots the values. Now she can see
the behavior of every instance of the value and pinpoint the incorrect
values. With this information, Patty returns to the debugger and stops
the program when it reaches the iteration containing incorrect values to
find the root cause.

The scenario described above encompasses the typical ways pro-
grammers debug their programs [39]. While not every bug requires all
of these methods, programmers typically use more than one of them.
The fact that many programmers use a combination of independent
debugging-methods when fixing their programs prompts the question:
can we design a better debugger that 1) reduces the amount of manual
instrumentation required, 2) gives the users greater control over the
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Fig. 2. An overview of Anteater on a recursive Fibonacci program, track-
ing the variable “val”. (A) shows the initial view presented by Anteater.
The generalized context tree, or icicle plot, shows the execution structure.
The teal blocks represent function calls while the varying shades of pur-
ple represent the value of “val” at that instance. We can see the recursive
calling structure of the Fibonacci function and can easily identify where
it is repeating work. The plot shows a scatterplot view of the variable
“val” over time. Brushing over the scatterplot highlights the correspond-
ing instances in the generalized context tree and the context bar. The
scatterplot shows repetitive patterns that indicate that Fibonacci is doing
redundant work. In (B), we click on a block in the generalized context
tree which causes its dependencies to be highlighted in red. This shows
that the selected block, representing an instance of “val”’, depends on
the prior two calls to the Fibonacci function.

values they see, and 3) provides them with a visualization option au-
tomatically? While various debugging tools address aspects of these
problems, no debugger comprehensively addresses all of them. There
exist tools that add visualizations on top of existing debuggers, such
as Mirur [9]. However, many of them still operate within a snapshot
of the program. Rather than visualizing the global behaviors of values,
such tools help visualize more complex objects at a given timestep.

We designed Anteater to address these problems in a more compre-
hensive way by using the principles of interactive visualization. Fig. 1
gives an overview of how Anteater compares to standard debugging
practices. Rather than presenting users a snapshot of everything at a
single timestep, we present them with global views of targeted vari-
ables of interest with interactions to narrow down to specific values.
In doing so, users can more easily discover patterns within the values
they deem important. We pair these global views with a visualization
of the execution structure that allows users to maintain context with the
execution and inspect execution information surrounding the values.
Fig. 2 shows an overview of Anteater.

If Programmer Patty had been using Anteater, she could have easily
set Anteater to track the value she believed to be raising issues along
with any other values that she believed to be potential roots of causation.
Anteater would then trace her program and provide her with visualiza-
tions to help her identify the iterations where the value was incorrect.
Patty could then filter down the execution tree to those iterations and
inspect the rest of the values she tracked. With Anteater, Patty com-
pletes all of her debugging in one place using only a few interactions
and requiring no manual instrumentation.

3.3 Tracing

Historically, program traces have captured performance information
for a program’s execution. They typically track function call and time
spent within a function. Visualizations are then created to present this
information to users. However, function calls and execution time only
solve a subset of bugs. Primarily, program traces help identify functions
that are taking more time than necessary or call structures that are not
expected. They do little to help with finding bugs in the actual values
being calculated by the program. Anteater expands the definition of a
trace to include values from within the program. Capturing these values

in the context of the trace, rather than collecting them in a separate file,
provides important context to the programmer. A context that is lost
when looking at the values in isolation.

4 TASK ANALYSIS

In this section, we discuss Anteater’s goals that were selected based on
both current standards of practice from literature and our own experi-
ences with respect to program debugging and understanding.

G1: Identifying and understanding the source of unexpected
execution behavior When programmers write and execute programs,
they have some expectation of how their program should be behaving
and what parts should be executing. As a result, one goal of debugging
is to identify what is causing an execution to deviate from what the
programmer expected.

G2: Identifying and understanding the source of unexpected
values and trends  Similar to G1, programmers typically have ideas
about what values they should observe during the execution and thus
desire to identify the root cause of unexpected values in the execution.

G3: Understanding an unfamiliar piece of code Frequently,
programmers are tasked with understanding code written by someone
else. Typically, this is no easy task and requires a significant amount of
effort on the part of the programmer.

Under the framework of Lam et al. [24], the identifying portions
of the goals G1 and G2, along with the entirety of G3, fall into the
“Discover Observation” category. The understanding portions of G1
and G2, however, fall into the “Identify Main Cause” category. From
these goals, we derived several sub-tasks.

T1: Track a variable or expression 1t is often useful to look at
the values that a variable or expression take on to determine if it is
behaving as-expected and to identify any erroneous values. This task
supports G2 and G3.

T2: Identify what functions are called at runtime Often it is
not clear from the static source code which functions will execute and
when. However, identifying which functions are actually called during
an execution is crucial for understanding how a program is operating.
This task supports G1 and G3.

T3: Identify dependencies for a variable Understanding depen-
dencies is crucial when trying to understand unfamiliar code. Identi-
fying how a value is calculated, including the execution path required
to complete the variable’s calculation, allows programmers to better
understand the underlying nature of the value in question. Such insight
can lead to finding the cause of an unexpected value. This task supports
G1 and G3.

T4: Identify interesting subsets of values Given a variable or
expression, it is important to be able to identify the subset of values
that correspond to interesting behavior. For example, if certain values
indicate a failure in the program, they need to be identified so the
surrounding values can be examined to understand the cause of the
behavior. This task supports G1 and G3.

T5: Observe relationships between values When debugging
a program, programmers often investigate relationships between vari-
ables. For example, if variable x changes, how does variable y change?
These relationships may not be explicitly defined by the code, i.e., y may
not directly depend on x. Uncovering such relationships contributes to
program understanding. This task supports G1 and G3.

T6: Maintain context between runtime state and static source
When trying to debug and understand a program, maintaining con-
text with the actual code is critical. If the programmer is manually
instrumenting print statements, they also must codify contextual infor-
mation to derive insight, e.g., representing the location of a variable’s
modification. This task supports G1, G2, and G3.
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Fig. 3. An overview of the Anteater system. First a user chooses variables to track, defining the trace specification, using the Anteater interface.
This trace specification is sent through the web interface to the python backend, along with the source code. The Anteater tracer then instruments
the source code to collect execution information along with the specified values. The right side of the figure shows a simplified version of this
instrumentation. After the code is instrumented, it is run using python to create the program trace. This trace is passed back through the web
interface to the Anteater front end where it is visualized and presented to the user.

A system that supports all of these tasks needs to be able to
track the execution structure of the program along with variable and
expression values in the context of its execution. An execution trace is
a natural fit for tracking the execution structure and can be modified to
also collect values. Once this data is collected, it needs to be presented
in a way that allows for easy navigation through it while supporting
these tasks. We argue that visualization is the best way to present this
information because it is known for providing overviews and context,
highlighting relationships, and facilitating the filtering down to subsets
of interesting information, all of which are needed to support these
tasks. Anteater takes a visualization approach to program debugging
and understanding that satisfies these goals through execution traces
and visualizations. Anteater deals solely with single-threaded programs
but we expect that this task analysis would need to be extended to
satisfy our goals for multi-threaded programs.

5 TRACING INFRASTRUCTURE AND DATA ORGANIZATION

To support the goals and tasks defined in Sec. 4, an execution trace
with accompanying variable and expression values must be collected.
Anteater implements a tracer that automatically instruments the source
code to collect the execution trace. Implemented in Python, the tracer
relies solely on the Abstract Syntax Trees (AST) library to facilitate
the transformation of the source code. While Anteater currently only
works with Python programs, the same principles can be implemented
in any language that has the ability to transform source code in a similar
way. After transforming the source code, Anteater runs the program,
creates the trace file, and organizes the data in a way that allows for
easy creation of interactive visualizations. Fig. 3 illustrates how the
system operates.

5.1 Tracing Programs

When a user chooses to create a trace, the Anteater backend is passed a
trace specification containing a list of variables and expressions to track
along with a list of functions and libraries to exclude from the trace (see
Sec. 6 for additional detail). The tracer indexes through these lists and
determines the scope in which each item resides to ensure that it only
tracks/excludes the specified items. For example, if two functions both
define variable x, the tracer will only track the one the user selected.

Once Anteater determines the scope of each item, the tracer uses
the Python ast library to parse the source code into its AST. It then
performs a series of traversals of the AST to collect information about
the source code and transform the program to trace the execution and
desired values.

In the first traversal through the AST, no transformations occur.
Rather, Anteater collects information about functions, loops, and de-
pendencies. For functions and loops, it collects the lines at which the
function definition or loop begins and ends. This information enables
more detailed linking between visualizations and source code. For
dependencies, the tracer traverses through the code and, for each vari-
able, stores functions and variables on which it directly depends (i.e.,
stores targets on the right side of an assignment statement). To find all
dependencies for a variable, we access its dependency list, and, for each
dependency in the list, we access their dependencies. This continues
until Anteater builds a comprehensive list of all possible dependencies.

Once all of the static data has been retrieved from the source code,
Anteater begins transforming it. An initial traversal through the AST
transforms the code to separate all function calls from their respective
expression statements and expand list comprehensions into for loops.
Anteater pulls all function calls that do not stand alone out of their
expressions and assigns them to a temporary variable that replaces the
call in the original expression (e.g., x = 2 f() becomes tempF = f();
x = 2xtempF). This allows Anteater to capture easily when and in
what order functions are called.

Next, the tracer performs the main transformations to insert the
instrumentation that collects the trace. As the tracer traverses the AST,
it always pauses at assignment, call, and loop nodes. When it reaches
an assignment node, it checks if the target variable needs to be tracked.
If so, it inserts new nodes into the AST that record the value of the
variable after assignment.

When the tracer reaches a call node, it first checks if the exclusion
list includes the function. If not, the tracer generates AST nodes to
record that the beginning of the call and inserts them before the call.
The tracer then generates AST nodes that record when the call has
returned and inserts them after the call. Because we move function
calls into their own statements, a function call statement fully executes
before the next function call starts. This allows all bookkeeping for a
call to be completed before the next call executes. A simplified example
of this transformation is shown in Fig. 3.

When the tracer reaches a loop, it creates a counter that counts the
iterations of that loop and inserts new instrumentation to record the
start of the loop. As it traverses the body of the loop, any time the
tracer creates a new record, it records the iteration in which that record
occurred. Tracking the iteration binds together groups of records in the
trace and records that occurred in the same part of the execution. The
tracer also checks if the iterator variables need to be tracked.

Lastly, the tracer transforms the program to record expressions.
Expressions are more complicated because they could occur in a variety
of nodes. As the tracer visits the nodes, it checks if the line containing
the node also contains a tracked expression. If it does, the tracer extracts
the expression from the line, assigns it to a temporary variable, and then
replaces the expression in the original line with the temporary variable.
This ensures that the expression only executes once and that the trace
records its exact behavior during the execution of the program.

Once Anteater completes the instrumentation, it compiles the AST
into an executable program, which generates the trace as it executes.

5.2 Data Organization

After Anteater instruments the source code, it runs the modified pro-
gram and creates the trace file. Anteater writes the raw trace as a simple
JSON file. This allows it to easily capture the hierarchical structure of
the execution as well as record data about program blocks as attributes
in the corresponding JSON block. Anteater then passes the trace to
the front-end. While convenient for collecting the trace, JSON is less
convenient and flexible for querying the trace which limits the range of
possible visualizations and interactions. Extracting instances of vari-
ables from the JSON structure requires traversing the entire structure.
This makes even the most basic queries, simply selecting data from
the structure, inefficient. Furthermore, more complex interactions such
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Fig. 4. An overview of how Anteater goes from source code to visualization. (A) shows the initial source code. We are going to track the variable “val”
After instrumenting the source code, as demonstrated in Fig. 3. The instrumented program creates a trace cell as shown in (B). Anteater then puts
the JSON into a SQL table as shown in (C). From there, Anteater queries the table to select all points from “Tracked” that have the name “val” and

creates a scatterplot of those points over time.

as filtering a variable or joining two variables, result in complicated
traversals of the JSON structure that further decrease the efficiency
of queries. To support more complex visualizations and interactions,
Anteater converts the JSON trace into a SQL database.

Anteater converts the JSON trace into several SQL tables, the pri-
mary two being “block” and “tracked”. The “block” table stores infor-
mation about all execution blocks that do not correspond to tracked
values. It includes columns storing the id, type, line number, timestamp,
and parent id of the block. Fig 4 demonstrates how to convert a JSON
call block into its corresponding SQL tables. Anteater uses these blocks
to create the generalized context tree, as shown in Fig. 2. Using the
parent id of each block, we could build the hierarchical structure used
to create the generalized context tree by starting at the root, querying
the SQL database to find all of the blocks that have the root as their
parent, and then visiting each child node and repeating this process.

The other primary table, the “tracked” table, stores the occurrences
of the variables and expressions the user tracked. This table stores the
id, name, line number, timestamp, value, parent id, iteration number,
and a boolean indicating if it is a variable (as opposed to an expression).
Anteater queries this table to build the visualizations. For basic, unfil-
tered visualizations, Anteater simply queries this table for all records
with a certain name. For filtered queries, it either specifies a range or a
specific set of id’s that the record can take on using the WHERE clause.
Fig 4 describes how to go from the source code, to JSON, to SQL, to
visualizations.

Additional tables exist, such as “function_name” and “for_loop” that
store additional information about certain types of blocks. The “cus-
tom” table stores the values of custom expressions that are collected
alongside the variables and expressions selected in the source code.

Converting the trace to SQL yields several advantages. First, query-
ing becomes much simpler. For basic visualizations, we now must
simply write a SELECT statement to gather all instances of a tracked
variable. To filter instances, we can simply add FILTER ON to the
SQL statement. Similarly, joining two variables becomes much simpler
through the use of JOIN. Fig. 5 shows a table of visualizations sup-
ported by Anteater and the corresponding SQL query keywords used to
collect the data.

Second, Anteater supports any visualization for which there exists
a SQL query to select the appropriate data. In other words, forming
the proper query becomes the only restriction to the range of possible
visualizations. While the current implementation only supports a few
visualizations, we could easily extend it to support others.

The last advantage comes from the decoupling of the visualizations
and the data representation. The specification of the visualizations does
not inherently depend on the representation of the data. A SQL query
simply returns a list of datapoints for Anteater to use in the visualization.
Because of this, new visualization implementations can be plugged
in with minimal effort to adapt them to fit into Anteater. This further
increases the extensibility and flexibility of Anteater.

Data Type Plot Type Query
Q Histogram SELECT
N Bar plot SELECT
QxQ Scatter SELECT, JOIN
QxQxQ... | Parallel Coordinates SELECT, JOIN
N, Q, QxQ Small Multiples SELECT, JOIN, SORT ON

Fig. 5. The above table shows the current visualizations supported and
the SQL queries used to create these visualizations. We use "Q” for
quantitative data and "N” for nominal.

6 ANTEATER’S VISUALIZATION DESIGN

Anteater presents a new way of exploring and interacting with pro-
gram executions helping users to gain a deeper understanding of the
inner-workings of their programs that they cannot get from traditional
tools. In the previous section, we discussed how Anteater creates the
execution trace. Here, we describe the visualization design of Anteater
and the features that facilitate the exploration of the execution trace. As
we walk through the design, we will describe the features in context
of a simple Python program that runs a recursive Fibonacci function.
In addition, we use Yi et al.’s categories of interactions [41] to classify
our interactions and further validate our design.

6.1 Creating a Program Trace

To fulfill T1, Anteater needs to allow a user to define which variables
and expressions to trace. The first page a user sees after they load their
source code allows them to set the specifications of the trace by high-
lighting text in their source code and right clicking to specify the action
(track or exclude). Users can also define additional expressions on their
chosen variables and expressions to track during execution. Anteater
best supports numerical values but has limited support for strings and
booleans. While lists and matrices cannot directly be visualized, infor-
mation about either structure can be tracked using custom expressions.
Once the users complete the trace specification, Anteater passes it to
the tracer in the backend for processing. Allowing users to select what
data they desire to see falls into Yi et al.’s “select” interaction category.

The tracer will only collect variables and expressions that the user
specifies. This was an explicit design choice, because the entirety of
data associated with every single variable is massive. Collecting all
variables would also record unnecessary data. Many variables residing
in a program have little importance in describing how code is behaving.
Thus, we allow the user to select the important variables to track.

Similarly, collecting all function calls leads to a large collection
of unimportant information. To help reduce clutter from unimportant
function calls, we add a predefined list of functions and libraries to
ignore (e.g., math, numpy, print, len) and allow users to add functions
of their own to exclude from the trace. This allows users to reduce
clutter and remove uninteresting/unimportant structures from the trace
to better highlight the important structures.
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Fig. 6. An example of Anteater splitting the data by a structural element.
Anteater splits the data by instances of a for loop at line 167, which
corresponds to iterations of the loop at line 166 (the selected block in the
generalized context tree). The plot shows one boxplot per loop instance.

6.2 Visualizing Trace Data

Once the tracer returns the execution trace, Anteater generates interac-
tive visualizations. Two types of visualizations are provided: a view of
the execution structure, which we call the generalized context tree after
Boehme et al. [8], and a visualization of the variable values.

6.2.1 Generalized Context Tree

The generalized context tree, shown on the right side of Fig. 2-A and
in Fig. 2-B, provides an overview of the execution structure. The
visualization has its origins in flame graphs and icicle plots. We chose
this type of visualization because it is well known for visualizing traces
and well understood. In our setting, each rectangular block in the plot
represents one of three things: a function call, a loop, or a variable
assignment. The icicle plot shows the hierarchy so that for a given
block, everything that is within its bounds below it, is a child. For
example, in Fig. 2-A, the block in the second row labeled “10: val =
...” is the initial call into the Fibonacci function and everything below
that happens within that call. The generalized context tree can be used
to determine which functions executed and when, fulfilling T2.

As we move from left to right in the plot, we are increasing in time;
everything to the left of a block was executed before that block. This
allows users to easily read the visualization and understand when blocks
are executed relative to other blocks.

In the generalized context tree, a single variable is highlighted,
selected by the user (in the upper right corner of Fig. 2-A). When users
select a variable, all blocks in the tree corresponding to the variable
(which reside at the leaf level) are colored by the value of that instance.
Positive values range from white (low) to purple (high), while negative
values range from white (least negative) to orange (most negative). In
Fig. 2-A, Anteater colors the leaf nodes representing the variable “val”
with varying shades of purple. Deeper leaves are shaded much lighter,
which indicates small values at those instances; this corresponds to the
deepest Fibonacci calls returning the smallest values. Coloring blocks
in this way shows the behavior of values in the context of the whole
execution. Every other variable or expression that appears in the trace
still appears in the generalized context tree; Anteater colors them gray.

6.2.2 Variable Value Plots

The second visualization provided by Anteater, is a plot of tracked
variables. Users drag variables and expressions from the source code
into the plot to visualize them. Anteater then automatically determines
the visualization options available for that datatype (Fig. 5 shows the
supported plots). Users can click on the icons above the plot to switch
between the different plot types available for that datatype. This falls
into Yi et al.’s “encode” category.

To support TS5, Anteater allows the user to drag multiple variables
into the plot. If the variables are compatible, Anteater plots them against
each other in either a scatterplot or parallel coordinates (depending on
the number of variables), allowing the user to observe their relationship.
Compatible variables share a common ancestor and have 1-1 instances
within that ancestor. Allowing users to change the variable on each axis
falls into Yi et al.’s “reconfigure” category.

Anteater also provides grouping capabilities that allow the user to
split the data into groups and create either a box and whisker plot or
small multiples of plots. The data can be split on either a variable/-
expression from the trace that takes on sufficiently few values (i.e.,
will not create dozens of plots) or a repeated structure in the execution,
such as a loop, where each instance of the structure contains multiple
instances of the tracked variables/expressions. For example, in Fig. 6,
Anteater splits the plot on the outer loop and creates a box and whisker
plot for each instance of the inner loop. Splitting points into groups
falls into Yi et al.’s “explore” category.

6.3 Interacting with the Trace Visualizations

Anteater’s interactions are key in helping users get a better understand-
ing of their program. Anteater offers several interactions that afford the
user the capabilities to 1) maintain context with the source code, 2) in-
spect the dependencies of a certain instance of a variable or expression,
3) link between the value plots and the generalized context tree, and
4) filter the visualizations to narrow the focus to an interesting/impor-
tant subset. The last capability enables users to better understand the
relationship between specific values and the structure of the execution.

6.3.1

When exploring the execution, it is important to link back to the source
code to maintain the context of the execution. On its own, the gen-
eralized context tree is fairly abstract. To provide necessary context,
when the user selects a block in the generalized context tree, the source
code jumps to, and highlights, the corresponding section of the code.
If it corresponds to a user-defined function call, it also highlights the
corresponding function. This interaction, paired with a preview of the
corresponding source code on the blocks, supports T6 by allowing
users to navigate the execution trace without forgetting their place in

the source code. It also falls into Yi et al.’s “connect” category.

Maintaining Source Code Context

6.3.2

To support T3, Anteater determines what dependencies could exist for
any instance of a variable (as discussed earlier) and then uses context
from the execution trace to eliminate some possibilities and present
the remainder to the user. When a user selects a block representing a
variable in the generalized context tree, Anteater checks if the prior
siblings as well as the siblings of any ancestors of that block are in the
list of possible dependencies. If they are, their blocks are highlighted
in red to show the user on which parts of the context tree that block
depends. This allows the user to quickly get an idea of which entities
contribute to that specific instance. In Fig. 2-A, the selected instance of
“val” depends on the prior two calls to “fib”. This interaction falls into
Yi et al.’s “explore” category.

Inspecting Dependencies

6.3.3 Linking visualizations

Anteater provides interactions on the plots and the generalized context
tree to link the two together. When a user selects a block in the general-
ized context tree, the values shown in the plot filter down to include all
values in the subtree rooted at the selected block. In addition, to provide
global context, the plot shows the values from the subtree rooted at the
parent of the selected block. As shown in the histogram in Fig. 9-B,
Anteater colors the bar representing the selected instance(s) black while
the coloring rest of the bars gray for context. In the scatterplot, it colors
the points representing selected instances black while coloring the rest
gray. We also provide linking from the plot back to the generalized con-
text tree. In the histogram, selecting a bar highlights the corresponding
blocks in the tree, as shown in Fig. 9-A. In the scatterplot, brushing
over a set of points highlights the corresponding blocks in the trees, as
shown in Fig. 2-B where the red blocks in the tree correspond to the
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Fig. 7. Debugging Gradient Descent with Anteater. In (A) it is immediately apparent in both the generalized context tree and the histogram that there
is a bug causing NaN's. In (B), we switch to the scatterplot view to see how the values behave before they become NaN. The values are mostly
centered around zero before becoming an extremely small negative, then going to infinity and becoming NaN. We suspect that the values centered
around zero are not actually zeros so we filter the values in the scatterplot to allow us to zoom in on them and switch to a symmetric log scale, shown
in (C). Now we see that the values are oscillating which suggests the problem of exploding gradients caused by a training rate that is too large. In (D)
we change the gradient and see that the value quickly converges as it should.

brushed points. These interactions support T4 by allowing the user to
pinpoint interesting values in the plots and locate them in the execution.

They also fall into Yi et al.’s “select” and “connect” category.

6.3.4 Filtering

Anteater supports a few types of filtering on the plot and the generalized
context tree to help users filter out unimportant information and empha-
size important parts of the execution, which helps support T4. The first
type of filtering was mentioned above where clicking on deeper nodes
in the context tree filters the value plots. Through this interaction, users
can filter down the plot to interesting subsets of the data. This falls into
Yi et al.’s “explore” and “filter” category.

In the scatterplot, users can brush over a subset of points, right
click, and select to filter out the values not in their brush. Anteater
then removes all other points from the plot, effectively zooming in on
selected points, and colors the blocks gray in the generalized context
tree corresponding to the filtered out points. An example of this can be
seen in Fig. 7(C) and Fig. 9-C. This falls into Yi et al.’s “filter” category.

One last way users can filter the visualization is by hiding parts
of the generalized context tree. Right clicking on a block in the tree
will expand the block to take up the entire width of the interface,
increasing the size of all of its children and thus making them easier
to see. However, in doing this, users might lose context of where they
are exploring with respect to the execution. To retain this context, we
add a smaller, grayscale version of the generalized context tree with
a highlighter bar over it. When the user zooms in on a block, the
highlighter narrows to indicate its place in the overall context tree. It
also highlights the selected block in yellow, as well as any other blocks
that are highlighted in the generalized context tree (dependencies and
brushed values). This allows users to see them even if they are outside
of the visible portion of it. In Fig. 6, we zoomed in on the loop at
166, and we see our location in the execution in the context bar. This
interaction falls into Yi et al.’s “abstract/elaborate” category.

7 EVALUATION

We evaluated the efficacy of Anteater’s framework through a user study
(Sec. 7.1) and a series of case studies (Sec. 7.2).
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User affordances offered by and the development status of a visualiza-
tion prototype are key factors to steer the design of a user evaluation
study [15]. In the case of Anteater, we do not intend to validate the
scalability or usability of its interface and architecture (see Section 8).
Rather, it is more appropriate to validate Anteater’s visualization design
principles and the user exploration processes that Anteater facilitates.
Hence, we chose pair analytics [4] an appropriate user evaluation
protocol.

Pair analytics offers a “think-aloud” protocol that helps generate ver-
bal data by capturing the natural interaction between study participants

Pair Analytics User Study

and the proctor using the visualization interface as a communication
anchor. Using the pair analytics method, a team is formed between a
study proctor (or a visualization expert) and a subject matter expert.
This approach allows the subject matter expert to focus less on the
nuances of the visualization interface (e.g., interaction types, loading
data, etc) and more on exploration and question-answering processes.

7.1.1

For each study, we recorded screen capture data along with audio
recordings of each interview. Due to the current policies in place
in the U.S., all sessions were held online rather than in person, as
would typically be done. Anteater’s primary developer served as the
study proctor and students from a Principles of Machine Learning
course served as the subject matter experts aiming to gain a deeper
understanding of their Python programs. The study proctor guided the
interactions within Anteater based on the verbal commands from the
subject matter expects. Akin to other pair analytics evaluation studies,
the proctor freely asked questions to promote exploratory thinking. In
effect, participants’ answering of such questions helped distill internal
cognitive process that were qualitatively analyzed.

We recruited total of 5 participants from the class, which had a total
of 20 students. However, only 3 of the studies were carried out to
completion. One of the studies was discarded since the participant
provided a program with a known bug that they thought might be
interesting to re-discover with Anteater. While the subject matter
expert’s program was appropriate for the user study, we thought the
a prior knowledge of the participant would bias the study’s outcome.
As a result, we promoted this program to a case study and discuss it in
Sec. 7.2. We discarded another study because the programs presented
by the participant were not a good fit for the study. They do, however,
highlight some of the limitations of Anteater and will be discussed in
more detail later in 7.1.2. For the participants who completed the study,
sessions lasted between 60 and 90 minutes. Approximately the first
30 minutes of each session was spent introducing the subject matter
experts to Anteater and getting Anteater set up to run properly on their
machines. All of the participants use Python as their primary language
in their work and consider themselves to be experts in Python.

Methodology

7.1.2 Results

From this study, we found that, even in its imperfect prototype state,
Anteater was useful to participants for debugging and achieving a better
understanding of their programs. For the sake of confidentiality, we
cannot give specifics about the programs used by participants. However,
we try to give some context in the form of general concepts found in data
analysis programs. Participants provided their own Python programs
for inspection with Anteater. All of the programs performed some form
of data analysis.

The first participant (P1) knew a bug existed in their program causing
it to run incorrectly, but had yet to find it. With the proctor’s guidance,



P1 leveraged Anteater to identify and fix the bug. Through the use of
the timeline plot and the ability to track custom expressions on more
complex data structures, P1 found the bug, fixed it, and then verified
that the revised program ran properly. During the exploration process,
P1 discovered that there was something unusual about the training
dataset, denoted as the whole dataset, which is split into left and right,
vital to the proper execution of the program. P1 correctly noticed
the problem since “the right dataset and the [whole] dataset cannot
be the same” even though the scatter plot showed them as identical.
Upon further investigation of the captured values in each dataset, P1
explained that the “right dataset ... points to [the] class dataset” which
causes them to overwrite the whole training set with only the right one.
After modifying the code, a new trace was run and P1 validated the
proper behavior of the code. After being asked if they were “able to
gain new insight into [their] program using Anteater,” P1 answered that
“the scatter graph and also the tracking values [were] very helpful.”

The other two participants (P2 and P3) presented more open-ended
cases. P2 and P3 did not have known bugs, rather non-trivial data
analysis programs whose execution was not fully understood. In both
cases, the timeline view of certain variables over time was crucial. P2
heavily relied on the timeline and filtering capabilities of Anteater to
verify that their program was converging as expected. P2 also used the
timeline and filtering feature to inspect if their program was reaching
the extremes of their search space. Using Anteater, P2 discovered
that the program did not search the entire space in one direction and
searched beyond the bounds in the other direction. After completing
their exploration, P2 commented that understanding “why the values
are so far off from the [search space] is a good next thing to look at.”

P3 also heavily relied on the timeline view. They used it to under-
stand the behavior of a set of weights in their analysis program. Before
their use of Anteater, P3 had little idea of how the weights behaved
throughout their program’s execution. Anteater allowed them to track
and visualize the weights over time to see how they evolved as the
program ran. After they inspected the weights, the participant com-
mented that “[ Anteater] completely helped [them] understand sort of
the underlying domain thing of what was going on with the weights.”
P3 further explained that Anteater was able to show that the program
“is converging on one particular feature as an important weight and the
rest [are seen as] super unimportant.” Through the use of Anteater,
P3 was able to understand the behavior of the weights relative to the
domain for which the program addressed, specifically through the use
of the visualizations.

After participants finished their exploration with Anteater, they were
asked a set of questions about their experience with it. The participants
were all able to gain new insight into their programs: P1 by finding their
bug and P2 and P3 through understanding the behavior of certain values.
When asked what they did not like or find useful, most of their responses
were related to usability problems with the current implementation of
Anteater, such as confusion about when to right click or left click and
when they can alter the source code to have it propagate to the backend.
We consider all of their concerns to be minor implementation problems,
rather than problems with the underlying system design. P2 found that
for their problem, the histograms were not very useful but could see
how such plots could help others. All participants expressed that, if a
polished and optimized version were available, they would like to use a
system like Anteater for future problems.

As mentioned earlier, we discarded one evaluation study, because
the programs provided were not ideally suited for the objective of the
evaluation. The participant initially brought a large, machine learning
program that took approximately a week to run. This program was not a
good fit since we do not aim to study the interaction between trace size
and applicability of our approach, but rather the utility of our approach
to real Python programmers. A program that takes a week to run will
generate a trace too large to handle by the current implementation of
Anteater. Admittedly, this does limit the generalizability of Anteater,
but we consider the study of how to scale a system like Anteater for
future work. The participant then provided several small-scale pro-
grams that we were also not ideally fit for the study. This study aimed
to use programs similar to those that would be found in a real data
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Fig. 8. Using Anteater to compare two runs of gradient descent that
should maximize the minimum crossing angle while minimizing edge
crossings. The generalized context trees in (A) show that the number
of intersections rapidly decreases (the color changes from dark purple
to white) while the minimum angle increases. The scatterplot shows
that the descent spends its first few steps at a bad solution and takes
approximately three big steps before converging on a good solution. In
contrast, in (B) the number of intersections increases throughout the
descent while the minimum angle decreases. The scatterplot shows that,
in general, as the number of intersections grows, the minimum angle
shrinks and lands at a bad solution.

analysis setting. The small-scale programs were simply not sufficiently
realistic for the study. They were more in-line with programs found in
an educational setting. As a result, rather than asking them to provide
additional programs, we omitted their case from the study.

7.2 Case Studies
Here, we present several, real-world cases, showcasing how Anteater
derives insight into debugging and program understanding.

7.2.1 Gradient Descent

The first case study we present inspects a program performing gra-
dient descent. This program was collected from a question on Stack
Overflow [1]. The programmer struggled to figure out why the result-
ing values were NaNs. We will walk through how to use Anteater to
understand the bug and correct it.

First, we run the program with Anteater to track the misbehaving
variable, “x.” Fig. 7-A shows the resulting execution tree and histogram.
The histogram shows that much of the descent generates NaNs.

As a natural next step, we look at these values over time. We switch
the plot type to “scatterplot” which shows a plot of the variable “x”
over time, shown in Fig. 7-B. Now, we clearly see that the value of “x”
stays around zero, before becoming a very small negative, then going
to infinity after which we hit the NaNs. However, there is something
strange in the values staying around zero and then suddenly becoming a
very small negative. To investigate this, we filter the values into to show
only those points staying close to zero. We also switch to a symmetric
log scale because we suspect that the values may not actually lie that
close to zero. The resulting visualizations are shown in Fig. 7-C. We
see that the value oscillates between increasingly large positives and
negatives until it reaches infinity.

Now that we know the problem, we try to fix it. The oscillating
values suggest that the gradients is exploding due to a training rate that
is too large. In Fig. 7-D, after lowering the training rate and re-running
the trace, the value quickly converges, as expected.

Using Anteater, we quickly and easily track the variable “x” and
see its behavior throughout the execution. In a traditional debugger,
detecting this behavior would have required stepping through several
iterations to view the values. After lowering the training rate, we repeat
this process to determine if that fixed the problem. This involves signif-
icantly more interaction with the debugger than when using Anteater.
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Fig. 9. (A) shows how we can use the bar plot to find where the barrier node occurs in the execution plot. (B) shows the weights of the paths to the
barrier node calculated in the program. We see that none of them are 5, as we expect from looking at the MPI call graph. (C) shows the data used to
calculate the path weight that should include the edge of weight 5. We see that the data does include this edge but the algorithm does not look at it.

For more details, refer to the supplemental video.

7.2.2 Graph Edge Crossing Angle Maximization

In this case study, we investigate a program that tries to balance the
number of edge crossings in a graph with the size of the minimum
crossing angle. The program searches for the layout that minimizes the
number of edge crossings while maximizing the size of the minimum
crossing angle. In this case study, we inspect the stability of the gradient
descent method on this problem.

To inspect the stability, we ran the gradient descent multiple times,
tracking the minimum angle and number of intersections at each itera-
tion of the gradient descent. We found that in most cases, the gradient
descent returns a good solution, as demonstrated in Fig. 8-A, where
it immediately begins moving toward a good solution and never turns
back. However, instances occur, as shown in Fig. §-B, where the gradi-
ent descent starts moving towards a bad solution, and never recovers.
Therefore, we can conclude that although the majority of the time it
produces a good solution, this method suffers from stability issues.

7.2.3 Longest Weighted Path Calculation

This case study was presented to us by a prospective participant in the
user study. While the program was not a good fit for the study, because
the participant already knew where the bug was, it presents a good
example of the utility of Anteater on real problems. This program aims
to find the critical path, i.e., the longest weighted path, from the “’Init”
to “Finalize” nodes in an MPI call graph. It uses the networkx library
to build a multiDAG and calculate the longest (weighted) path. We
were given this program with the knowledge that this bug existed and
which methods were affected but no other information on how to fix
it. We then found and fixed the bug using only Anteater. Below, we
explain how we found the bug.

To begin, we loaded the program and data files into Anteater. We
know from inspecting the test graph manually that the algorithm over-
looks one of the edges (of weight 5) from the “’Init” node into the
”Barrier” node. To build the longest path, the algorithm topologically
sorts the nodes and iterates over them. For each node, it iterates over all
of the predecessor nodes. To find the bug, we first want to find where
the barrier node occurs. We do this by collecting the node label in each
iteration. By inspecting the node labels in the bar plot, as shown in
Fig 9-A, we find the point in the execution tree where the loop reaches
the ”barrier” node. Once we find the barrier node, we select it to view
the other values in that specific iteration. We then switch variables to
look at the path weights for each predecessor, as shown in Fig. 9-B.
We see that none of the path weights reach 5, which indicates that the
algorithm misses the edge of weight 5 into the “Barrier” node. Next, we
look at the data used to calculate the path weights. We notice that one
of the “Init” predecessors has two weights associated with it, as shown
in the filtered bar in Fig. 9-C. There are two keys in the dictionary, one
for each edge from “Init” to “Barrier”. Looking back at the algorithm,

we see that it only looks at the first key which causes it to miss the edge
of weight 5 and report an incorrect longest weighted path. To fix this,
we simply find the edge with the highest weight over all of the edges
from the predecessor to current node.

8 DISCUSSION AND LIMITATIONS

Omnicode vs. Anteater While Omnicode and Anteater both in-
tend to help programmers debug and understand their programs, the two
systems differ in their target audience. Omnicode aims to help novice
users create mental-models to reason about their program’s execution
and debug unexpected behavior. The size and complexity of programs
it needs to support for this audience is quite small. Thus, Omnicode
only supports programs of around 10 variables and 100 execution steps.
Anteater aims to help programmers in general. Therefore it needs to
support different types of programs.

While Anteater cannot support large software-systems as they pro-
duce an unmanageable amount of data, it can support much larger
programs than those written by novices, such as those programs written
by data scientists. Most of the differences between Omnicode and
Anteater stem from the fact that they are geared toward different audi-
ences. Omnicode supports a live programming environment because
its target programs are small whereas a static environment makes more
sense for Anteater. Similarly, Omnicode tracks every variable in the
program which is infeasible for the larger programs Anteater supports.

Limitations  Anteater will not scale to large traces. In these pro-
grams, the traces become too large and the visualizations unreadable.
Research exists on collecting the entire trace of large programs [29]; fu-
ture work is needed to evaluate if Anteater works well with this method.
We note that our visualizations operate on relational data, and there is a
growing number of techniques to support interactive visualizations on
large datasets [17]. A full investigation of their impact on program visu-
alization, however, is out of present scope. In addition, Anteater works
best with numerical data and has limited support for other datatypes.
While it can present numbers, strings, and booleans, it does not sup-
port compound objects directly. Information about variables of these
datatypes can still be visualized through the use of custom expressions,
but we leave first-class support for more datatypes for future work.
Finally, Anteater assumes a sequential programming model and does
not support parallel programs. Work exists in automatic tracing of
parallel programs in the traditional sense (without values) but applying
and extending these traces to our system is left for future work.
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