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Fig. 1. An analyst inspects the behavior of a value in their script. One common practice (top row) is to instrument the script manually to
collect variables of interest (here, x), and print their values. Manual instrumentation, however, is itself repetitive and error-prone. Another
common practice (second row) is to use a debugger to stop the execution of the script and view each individual value assignment of x,
providing a precise, but narrow, one-at-a-time view of the values. Anteater (bottom row) automatically instruments the script to trace the
script and record variables along with execution structures. Its interactive visualizations provide global views of trace data, enabling
easy observation of value behavior as well as interactions that narrow down the views to specific subsets of the execution.

Abstract— As the field of data science continues to grow, so does the need for adequate tools to understand and debug data science
scripts. Current debugging practices fall short when applied to a data science setting, due to the exploratory and iterative nature of
analysis scripts. Additionally, computational notebooks, the preferred scripting environment of many data scientists, present additional
challenges to understanding and debugging workflows, including the non-linear execution of code snippets. This paper presents
Anteater, a trace-based visual debugging method for data science scripts. Anteater automatically traces and visualizes execution data
with minimal analyst input. The visualizations illustrate execution and value behaviors that aid in understanding the results of analysis
scripts. To maximize the number of workflows supported, we present prototype implementations in both Python and Jupyter. Last, to
demonstrate Anteater’s support for analysis understanding tasks, we provide two usage scenarios on real world analysis scripts.

Index Terms—Interactive Visualization, Program Traces, Jupyter, Debugging

1 INTRODUCTION

From industry to academia, data science has become ubiquitous across
a wide range of domains and is central in data-driven decision making.
These decisions frequently have real world impact and, as such, it is
imperative that people adequately understand the behavior of their anal-
yses. Current practices for understanding analysis scripts are generally
limited to standard program debugging practices, including print state-
ments, logging files, and step-through debuggers [9]. However, these
practices, while notoriously difficult in standard software engineering
settings, become even more cumbersome in a data science setting.
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Data scientists exist in a wide range of fields and, although they
exhibit sufficient programming skills, they often come from non-
computing backgrounds where they did not receive formal training
in programming practices [23]. As such, expecting all data scientists to
be proficient enough in standard debugging methods to navigate and
deeply understand their scripts is often unrealistic.

The rise of computational notebooks for data science further compli-
cates the debugging practices for data scientists. Computational note-
books support exploratory programming behaviors that are common
to data scientists [24], such as applying multiple analyses or param-
eter settings to a single dataset to achieve the best results. However,
they also create several pain points when it comes to understanding
and debugging analysis behavior, including out of order execution and
workflow disruption [9]. Not only does out of order execution make
it difficult to track the flow of the script, but it renders any standard
debugging tools somewhat ineffective as they cannot track and illus-
trate the order of execution. Additionally, computational notebooks do
not have built in debuggers. Some debugging extensions exists (e.g.
Xeus for JupyterLab [15]) but are not globally supported or included
by default. This causes additional barriers to understanding scripts for
data scientists working in computational notebooks.

In 1993, after observing that debugging practices had not deviated
substantially from iterative breakpoint debugging over the previous
25 years, Steven Reiss proposed a the idea of trace-based debugging -



collecting execution information automatically in a program trace and
allowing people to inspect the collected information [26]. Reiss identi-
fied the primary benefits of this approach as the ability to inspect any
point of the past state (alleviating the need for multiple runs with vary-
ing breakpoints) and eliminating the problem of multiple runs yielding
different behaviors (easing the challenges of reproducing erroneous
behaviors).

While these benefits are of great importance in general debugging
tasks, we see an additional opportunity to use trace data to support
data scientists in understanding their exploratory programming tasks.
Exploratory programming tasks come with subsequent exploratory de-
bugging tasks, such as understanding or evaluating the “goodness” of
analysis results. For example, an analyst may want to observe the
evolution of the proposed solution in gradient descent to determine
the algorithms stability or inspect the correlation of the proposed so-
lutions in a multi-objective optimization to learn the priorities of the
optimization. Traditional debugging methods fail to support these types
of debugging tasks because the rely on the serial inspection of values.
This requires analysts to build and maintain a mental image of value
trends and behaviors, an extremely difficult task.

However, because traces record complete histories of values auto-
matically, they present the opportunity to support broader overviews
of value trends that alleviate the burden of building mental images.
Traditional methods of serially inspecting values directly contrasts the
fundamental principles of visualization. We have seen time and again
the power of interactive visualization for presenting overviews of data
in an easily consumable manner that is far less burdensome than serially
inspecting individual values. In fact, the widely used “Visualization In-
formation Seeking Mantra” emphasizes the need for overviews of data
first, with controls to filter and inspect details as needed [32]. However,
these visualization principles have yet to be applied in a debugging
setting. Thus, the question remains: How can we visualize traces of
data science scripts to reveal data behaviors?

To address this question, we developed a trace-based visual de-
bugging method, Anteater, that we builds on the idea of trace-based
debugging by combining it with well-principled visualizations. Fig. 1
contrasts our method with traditional practices. Rather than manually
inserting logging statements or searching for a breakpoint, we automat-
ically collect a trace of the program. Then, once collected, we present
the trace through overview visualizations that illustrate the behavior
of the program execution and values. From here, we provide people
with controls to winnow down to specific areas or values of interest.
To support multiple data science workflows, we present two prototype
implementations of our method: one in Python and one in Jupyter
notebooks. Fig. 2 presents an overview of the Juypter implementation
of Anteater and examples of the trace visualizations.

In summary, the contributions of this paper include:

• A trace-based visual debugging method based on automatically
gathering, organizing, and visualizing script data.

• Prototype implementations in both Python and Jupyter notebooks.

• Two usage scenarios using real world programs to demonstrate
the benefits of our method on data science scripts.

2 RELATED WORK

Debugging in Computational Notebooks Recent years have
seen a massive increase in the usage of Jupyter for data science [24].
Jupyter appeals to analysts because of its support for exploratory, itera-
tive analyses. However, despite the benefits, computational notebooks
present several challenges that hinder data science workflows.

Notably amongst these challenges, is the non-linearity of execution
flows [9, 30]. Jupyter allows analysts to run cells one at a time, more
than once, and in any order. This makes tracing the execution flow
extremely difficult to follow [9].

Additionally, non-linearity contributes to a larger problem of messi-
ness in notebooks [18, 30]. Because analysts can rapidly add new
analyses and transformations, notebooks can quickly become overrun
with outdated, unused, or purely exploratory cells. However, many

Fig. 2. An overview of Anteater in Jupyter. (A) shows an example
notebook where an analyst ran the same gradient descent cells under
four different training rates, highlighting the annotations needed to run
Anteater. (b) shows a close up of the two types of trace visualization with
an example interaction.

analysts are reluctant to fully remove old cells for fear of deleting
something they may actually want later [30].

Chattonpadhyay et al. identify several additional pain points with
computational notebooks [9]. While these challenges range from
data loading to reproducability, several center around the ability to get
immediate feedback without disrupting their workflow. Specifically,
they identified pain points with debugging due to the lack of adequate
in notebook tools for inspecting variable values and script flow.

Several tools have been proposed to help address these challenges.
Xeus is notebook extension in JupyterLab that provides a step-through
debugging in Jupyter [15]. While it provides inspection of variable
values in notebooks, it still suffers from the limitations of breakpoint
debuggers on exploratory debugging tasks. Namaki et al.’s Vamsa
provides automated data provenance in ML models that illustrates
which data the model used to produce specific outputs [21]. Weinmen
et al.’s Fork it [36] allows analysts to create multiple interpreter sessions
to support side-by-side comparison of analyses workflows.

While each of these tools takes a step towards supporting analysts
in notebooks, they do not quite address the problem of non-linear
workflows and understanding the results of exploratory programming
tasks. Our method is designed to add additional support for these
problems. It allows for easy, in workflow inspection of variable values
and the execution structure. Anteater accounts for the non-linearity of
executed cells and can present the overall execution structure, even if it
does not align with the linear flow of the notebook.

Visual Debugging Many attempts have been made to leverage
visualization principles to augment the debugging process. Some efforts
add visualization to breakpoint and step-through debuggers. Traditional
visual debuggers typically provide visualization views of variables at a
specific instance in time, much like traditional debuggers. Several of
these tools add visualizations of objects to a breakpoint debugger [7,
10, 29]. Others provide visualizations to show task-specific information
about the execution, such as an overview of the heap and stack [2,20] the
impact of resource utilization on control flow [22], object mutation [31],
or run-time state and data structures of the program [34].

Generally, these tools present localized views that describe one
particular state of the execution. Some tools provide additional context
by allowing back-stepping in the debugger or providing a history of
the execution [11, 19, 27]. In addition, some tools provide global views
to show the behavior of values over the entire execution. Some tools



Fig. 3. An overview of the Anteater method. In (a), an analyst chooses variables and expressions to track, defining the trace specification. Then,
Anteater passes the trace specification and the source code to the tracer. In the tracer, Anteater instruments the source code and traces the
script. (b) shows a simplified version of this instrumentation. Next, in (c), it organizes the data in preparation for visualization. Last, in (d), Anteater
automatically generates and presents visualizations of the trace.

give global views of value behaviors by introducing sparklines next to
the line of source code defining the value [4, 14]. In contrast, Anteater
displays global views that take the execution context into account. As
we show in our evaluation, this perspective can be particularly helpful
in debugging scenarios.

Hoffswell et al. [13] and Burg et al. [8] describe systems for visually
debugging user interactions, one on Vega specifications and the other
on web applications in general. Similar to Anteater, both systems
recognize the importance of recording program behavior and providing
global views of data to understand the inner-workings of a program.
They differ from Anteater in their focus on debugging interactions with
an application rather than the execution of a program.

Alsallakh et al. [3] created an Eclipse plugin that tracks specific
tracepoints (equivalent to a breakpoint in a debugger) throughout a
program’s execution. Watchpoints can also be added to a field on which
the tracer will track assignments. While the plugin’s goals closely relate
to those of our method, our method stands apart for two reasons: (1)
we trace all execution structures, rather than user-defined tracepoints,
along with the values desired by the user and (2) Anteater presents all
this information in linked visualizations of the execution and values,
providing necessary context.

Kang et al.’s [16] Omnicode provides run-time visualizations of
program states, designed to aid novice users in building mental models
about programs. Crucially, Omnicode visualizes values in a live coding
environment which updates in real time. The primary visualization pro-
vided is a scatterplot matrix displaying plots for each variable over all
execution steps. While Omnicode and Anteater have much in common,
they were designed for different audiences (novices vs. data scientists)
and thus support different types of programs and debugging tasks.

Trace Visualization Trace visualizations are often applied in sup-
port of understanding parallel programs [17, 33, 35]. Often, trace visu-
alizations leverage icicle plots and flame graphs as the primary visual
representation [5, 12, 17, 28, 35]. Anteater uses a visual encoding rem-
iniscent of icicle plots and flame graphs to plot the execution trace,
which we will call the generalized context tree (GCT), after Boehme et
al. [6] However, Anteater differs in its definition of trace. While these
previous traces capture the calling structure of the execution, Anteater
extends this to capture values of marked variables and expressions, as
well as loop behaviors. This extension provides additional context for
how values are reached.

3 A TRACE-BASED VISUAL DEBUGGING METHOD

We present a new method for exploring and interacting with analy-
sis executions, helping people to gain a deeper understanding of the
inner-workings of their scripts that they cannot get from traditional de-
bugging tools. It gathers information into traces as the script executes
and automatically creates interactive visualizations of the gathered in-
formation. Fig. 3 presents an overview of the Anteater method. The
method consists of 3 stages: (1) specifying and collecting the trace,
(2) organizing the program data for interactive visualization, (3) au-

tomatically generating interactive visualizations of trace data. In the
remainder of this section, we describe each stage in more detail, along
with implementation details for the Python version, and discuss the
modifications necessary for debugging in Jupyter1.

3.1 Specifying and Collecting Traces
At the first stage, (Fig. 3(a)), analysts must specify what the trace col-
lects. This stage is crucial because it dictates what data people can
access and analyze. The trace must be carefully designed to provide
the information desired for the given program debugging task. Stan-
dard traces typically focus on execution structure (e.g. function calls
and iterative behaviors). In the context of exploratory debugging, we
identified the importance of collecting intermediate variable values, in
the context of the execution structure, to provide insight into value be-
haviors as well as the execution structure. Thus, the Anteater prototype
emphasizes the collection of intermediate variable values to support
more exploratory debugging tasks.

At this stage we must also consider the level of human input required
for defining the collected data. We could take a “top-down” refinement
approach where, by default, the tracer collects all program data avail-
able to it while providing controls for people to exclude certain values
and execution structures from collection. This approach benefits people
who have no clear idea of where to begin their exploration by provid-
ing them access to all of the intermediate values. On the other hand,
this approach often generates a massive amount of data that can easily
overwhelm people. In contrast, we could also take a “bottom-up” spec-
ification approach where people must specify precisely what should be
collected. However, this approach requires substantially more effort
from the analyst, negating some of the benefits of automation in this
the method. After considering these two approaches, we take a mixed
approach where Anteater automatically collects execution structure and
relevant values (e.g. iterator values), but requires people to specify the
variable values to collect. Ultimately, we chose this to help limit the
size of the trace and allow Anteater to support larger programs.

Implementation As mentioned above, Anteater requires people to
specify values to track. These values may be defined variables, expres-
sions within a statement, or custom expressions that the program does
not directly evaluate but provide insight into the behavior. Additionally,
to eliminate unimportant functions from the trace, people may specify
functions and libraries to exclude from the trace. Together, these two
pieces create a trace specification.

Once defined, Anteater passes this trace specification to the tracer.
Our tracer directly modifies the abstract syntax tree (AST) to instrument
the source code (pre-execution) so that it records the trace data as the
code executes. When creating the instrumentation, we must be careful
to ensure to not disrupt the correct execution of the program. This
requires careful definition of how to record execution structures, such

1An online Python version of Anteater can be found at https://rjfaust.
github.io/files/Anteater/. The Anteater library for Jupyter will be re-
leased on GitHub.

https://rjfaust.github.io/files/Anteater/
https://rjfaust.github.io/files/Anteater/


Fig. 4. An overview of how Anteater goes from source code to visualiza-
tion. (A) shows the initial source code where we will track the variable
“val”. (B) shows a snippet of the trace produced as the instrumented
script executes. Anteater then puts the JSON into a SQL table as shown
in (C). From there, Anteater queries database to build the dataset of
“val” instances and passes them to Anteater’s visualization generator
which generates a visualization specification (as shown in (D)) for the
corresponding plot. Anteater then renders the specification to create a
scatterplot of those points over time (shown in (E)).

as function calls. For example, if the program contains nested function
calls, we must ensure that the we fully execute and record the inner
call before executing the outer call. Additionally, we opt to collect
all instances of tracked variables, not just the specified instance. To
accommodate both of these constraints, we must first do an initial pass
through the program to determine the scope of each variable to ensure
that we only capture the desired instances and extract all function calls
into isolated statements.

After completing the initial pass, we instrument the program with
logging functions to record all executions structures and all specified
program values. Fig. 3(b) shows a simplified example of our instru-
mentation. Once instrumented, Anteater compiles the AST into an
executable program that generates the trace as it executes.

3.2 Organizing Program Data

Once we define what the trace will collect, we need to determine the
best way to store that data (Fig. 3 (c)). The most important consideration
here is how to store the data for easy, rapid querying of the data to
build interactive visualizations. To enable people to efficiently navigate
and inspect program data, we must provide responsive interactions
that allow people to easily navigate between different portions of the
data. In Anteater’s traces, we identified two primary types of data:
the hierarchical execution structure and sequential lists of instances of
variable values collected throughout the execution. While the variable
values reside in the hierarchical execution structure, for the purpose of
creating global visualizations of value behavior, they better correspond
to tabular data. Thus, the two types of data are fundamentally different
and we need a data organization and that handles them separately to
facilitate rapid querying and visualization of both types.

Implementation Fig 4 illustrates how we go from the source code
to visualizations. Anteater writes the raw trace as a simple JSON file,
shown in Fig. 4 (B). This allows it to easily capture the hierarchical
structure of the execution as well as record meta-data about program
blocks. However, this hierarchical JSON structure is extremely ineffi-
cient for querying the variable values in the trace. It requires traversing
the hierarchy to gather the values every time they change. Additionally,
it limits the support for more complex queries and interactions, such as
custom filtering and joining. To combat this problem, we convert the
hierarchical trace into a SQL database.

Data Type Plot Type Query
Q Histogram SELECT

N Bar plot SELECT

QxQ Scatter SELECT, JOIN
QxQxQ... Parallel Coordinates SELECT, JOIN
N, Q, QxQ Small Multiples SELECT, JOIN, SORT ON

Table 1. The above table shows the current visualizations supported
and the SQL queries used to create these visualizations. We use ”Q” for
quantitative data and ”N” for nominal.

Converting the trace to SQL yields several advantages. First, query-
ing becomes much simpler. For basic visualizations, we now must
simply write a SELECT statement to gather all instances of a tracked
variable. To filter instances, we can simply add a WHERE clause to the
SQL statement. Similarly, joining two variables becomes much simpler
through the use of JOIN. Table 1 shows a table of visualizations sup-
ported by Anteater and the corresponding SQL query keywords used to
collect the data.

Second, Anteater supports any visualization for which there exists
a SQL query to select the appropriate data. In other words, forming
the proper query becomes the only restriction to the range of possible
visualizations. While the current implementation only supports a few
visualizations, we could easily extend it to support others.

The last advantage comes from the decoupling of the visualizations
and the data representation. The specification of the visualizations
does not inherently depend on the representation of the data. A SQL
query simply returns a list of data points for Anteater to use in the
visualization. Because of this, we can easily swap in different visual-
ization implementations, depending on the setting. For example, in our
standalone tool, we found Vega-lite simpler and cleaner for generating
visualizations but in our Jupyter adaptation, D3 was easier to apply and
we were easily able to swap in the D3 implementations. The ability to
quickly adapt for new visualization implementations further increases
the extensibility and flexibility of Anteater.

3.3 Automatically Generating Interactive Visualizations
The last stage of our method is the automatic generation of interactive
visualizations (Fig. 3 (d)). The visualizations should be well-principled
and automatically generated with some support for customization.

Well-principled visualizations are those that following the most basic
guidelines for visualization. Specifically, they should present overviews
of the program first, rather than showing the details of individual time
slices first like traditional debugging methods. The overviews give
people a starting point for identifying interesting behaviors and replaces
the trial and error of choosing appropriate breakpoints or locations
for logging, particularly in exploratory debugging tasks where there
may not be one set location for breaking. Additionally, there may
be many value behaviors to inspect in a single execution. However,
using traditional methods, serially inspecting and mentally tracking
the behavior of multiple values at once requires substantial mental
effort and memory recall to build a mental image of multiple behaviors.
With our method, people can generate global views of each individual
behavior, as well as generate combined views to inspect correlations
between behaviors. After viewing the overview, we must supply people
with the tools to filter down to execution areas or value subsets of
interest and view the details of any relevant data.

Supporting automatic visualization removes the burden of process-
ing and determining how best to inspect data from the shoulders of
the analyst. However, in a general setting, it is difficult to definitively
predict the needs of analysts. As such, some customization and alter-
native views should be supported. For example, non-linear scales may
be better suited for some visualizations. Providing people with small,
easy customization options enables them to adjust visualizations more
appropriately for their task.

Implementation Table 1 illustrates how we choose the appropriate
visualization for variable values. We determine the type of data selected
(quantitative or nominal) and the corresponding visualizations. For
example, a single quantitative variable is visualized using a histogram



or a scatterplot against time In our prototype, we intentionally focused
on quantitative data and chose well known visualizations to reduce the
learning curve of using a new debugger. We further discuss the details
of our visual design and implementation in Section 4.

3.4 Modifying Anteater for Debugging in Jupyter

To support inspection of analyses in Jupyter, we must make a few
modifications to Anteater. Rather than directly modifying Jupyter,
we ported Anteater into a library that analysts call from their Jupyter
code. The library requires analysts to insert minor annotations into
their program to indicate the entry point at which to start tracing, the
values to track as they occur in the program, and the point at which to
execute the trace. However, these annotations are comparable to the
interactions required in the Python version.

Unlike the Python version, the library cannot automatically collect
data from the entire execution, just the portion between the defined
entry point and the trace point. As such, the notebook must execute
fully (reaching the calls to the Anteater library) before Anteater can
trace it. Thus, the section of traced code must execute twice - once to
initiate and specify the trace and once to actually trace it. As a result,
Anteater must ensure that the second execution exactly duplicates the
original. To do this, Anteater creates a shadow version of the program
that uses the same input state but executes independently of the original
version. We describe the details of the three types of analyst annotations
and the shadow execution below.

Initialization When the initialization call executes, it records its
location (i.e. the executed cell) as the starting point for the trace. It
then duplicates the current state of the program into a shadow state.
This ensures that we save all of the inputs into the traced portion of the
program. Additionally, we randomly generate and set a random seed
to ensure that any random values in the script remain consistent across
the two executions.

Setting Values to Collect Analysts must insert statements to
specify the values they wish Anteater to record. When the script reaches
one of these statements, Anteater records the names of the values to be
tracked and the cell where they exist.

Running the Trace Once we reach the trace point, we must piece
together the portion of the program to be traced. In the local state,
Jupyter stores a log of the previously executed cells. Using this, we
locate the starting point (as recorded during initialization) and merge all
of the executed cells into a single program. Then, we must transform
the program into a “shadow” version by renaming all of the defined vari-
ables and functions, and setting the input state to the shadow state saved
during initialization. This ensures that the traced program executes
from the same initial state as the original execution.

From here, the tracing and data organization follows that of the
standalone tool, described above. To create the visualizations, we
simply run plotting scripts using Jupyter’s Javascript support, displaying
them in the output area of the cell running the trace.

4 ANTEATER’S VISUALIZATION DESIGN

Anteater presents a new way of exploring and interacting with program
executions helping people get a deeper understanding of the inner-
workings of their programs that they cannot get from traditional tools.
In this section, we describe the visualization design of Anteater and the
features that facilitate the exploration of the execution trace.

4.1 Visualizing Program Data

Once Anteater collects and organizes the program data, it automatically
presents interactive visualizations. Two types of visualizations are pro-
vided: a view of the execution structure, which we call the generalized
context tree, and a visualization of the variable values. For ease of
use, Anteater provides well understood visualizations of the program
information but can be easily extended to support more complex or
custom visualizations.

Boxplot of dist[u][0] + data[0].get(weight, default_weight) split on “for” at line 167

instance of “for” at line 167

Fig. 5. An example of Anteater splitting the data by a structural element.
Anteater splits the data by instances of a for loop at line 167, which
corresponds to iterations of the loop at line 166 (the selected block in the
generalized context tree). The plot shows one boxplot per loop instance.

4.1.1 Generalized Context Tree
The generalized context tree (GCT), shown on the right side of Fig.
2-B, provides an overview of the execution structure. It illustrates the
hierarchical structure of the execution, clearly showing when a function
is called and from where. When inspecting program values, it provides
the context of the values location in the overall execution.

The visualization has its origins in flame graphs and icicle plots. We
chose this type of visualization because it is well known and under-
stood for visualizing traditional execution traces. In Anteater, each
rectangular block in the plot represents one of three things: a function
call, a loop, or a collected value. The plot illustrates the hierarchy
such that, for a given block, everything executed within that block (e.g.
all values assigned within a function call) is drawn within the bounds
of the bottom edge of the block. Time increases when moving form
left to right in the plot such that everything to the left of a block was
fully executed before that block. This allows analysts to easily read
the visualization and understand when blocks execute relative to other
blocks.

Additionally, the GCT highlights a single variable corresponding to
the variable on the x-axis of the current plot. When someone assigns
a variable to the x-axis, the GCT colors all blocks in the tree corre-
sponding to that variable (which reside at the leaf level) by the value of
the corresponding instance. Positive values range from white (low) to
purple (high), while negative values range from white (least negative)
to orange (most negative). Additionally, special colors are used for
non-numeric values such as infinity and NaN. Fig. 6 colors the leaf
nodes representing the variable ”x” based on their value.

4.1.2 Variable Value Plots
The second visualization provided by Anteater, is a plot of tracked
variables. To generate the plot, Anteater only requires people to specify
which variable(s) they wish to view. Anteater then queries the database
to retrieve a list of the selected values, in order of occurrence. when
creating a plot, Anteater first checks the data types of each involved
variable before looking up the plot type appropriate for the selected
variable(s) (based on Table 1). Once Anteater determines the correct
plot type, it generates the visualization specification. First, it deter-
mines the appropriate mark for the plot (bar, point, line, etc.) and plots
the initial data. At this time, Anteater performs any necessary filtering
and transformations (e.g. aggregation for histograms and filtering out
non-numeric values in quantitative data such as ”NaN” values). If
quantitative variables have non-numeric values Anteater will concate-
nate additional subplots (horizontally or vertically depending on which



(A) (B) (C) (D)

Before Bug Fix After Bug Fix

Fig. 6. Debugging Gradient Descent with Anteater, as described in Section 5.1. (A) - (C) show different visualizations of the buggy values. (D) shows
the visualization after correcting the bug.

variable contains the values) to show these values, as in Fig. 6 A and B.
This builds the base visualization for the specified variables.

4.2 Interacting with the Visualizations
Anteater’s interactions are key in helping people get better understand
their program behavior. We organize our interactions based on Yi et
al.’s categories of interaction: Select, Explore, Reconfigure, Encode,
Abstract/Elaborate, Filter, and Connect [37].

Select and Connect Anteater provides interactions to link the
generalized context tree and the plot view, in both directions. These
interactions enable filtering of data and refinement of views to allow
for the inspection of subsets of the program data.

Anteater provides interactions on the plots and the GCT to link the
two together. When an analyst selects a block in the GCT, the values
shown in the plot filter down to include all values in the subtree rooted
at the selected block, as shown in Fig. 2-A. In addition, to provide
global context, the plot shows the values from the subtree rooted at
the parent of the selected block. In the histogram, Anteater colors the
bar representing the selected instance(s) blue while the coloring rest
of the bars gray for context. Similarly, in the scatterplot, it colors the
points representing selected instances while leaving the rest gray. These
interactions enable people to narrow their scope to a specific portion
of the execution. For example, if they want to look at the values that
occur within a specific function call, the easily can do this by selecting
the call in the GCT.

Anteater also provides linking from the plot back to the GCT. In
the histogram, selecting a bar highlights the corresponding blocks in
the tree. In the scatterplot, brushing over a set of points highlights the
corresponding blocks in the trees, as shown in Fig. 2-B where the red
blocks in the tree correspond to the brushed points. These interaction
allows people to quickly locate where specific values occurred in the
execution. For example, if a specific value looks appears abnormal,
highlighting quickly illustrates where that value occurred and provides
a location for inspecting additional values.

Explore Anteater supports two “explore” interactions: faceting
values into groups and inspecting dependencies. The first interaction,
faceting values into groups, enables people to view distinct subsets of a
variable. Anteater provides grouping capabilities that allow analysts to
facet the data into groups and create either a series of box and whisker
plots on the same axes (one for each group) or small multiples of plots.
The data can be split on either a related variable/expression from the
trace (such as a boolean value) or a repeated structure in the execution,
such as a loop, where each instance of the structure contains multiple
instances of the tracked variables/expressions. For example, in Fig. 5,
Anteater splits the plot on the outer loop and creates a box and whisker
plot for each instance of the inner loop.

The second “explore” interaction supports the inspection of depen-
dencies. Anteater determines what dependencies could exist for any
instance of a variable. Prior to tracing, Anteater statically analyzes the
source code to generate lists of potential dependencies for each tracked
value. When someone selects a variable block in the GCT, Anteater
accesses this list of potential dependencies and then, using context from

the actual trace, prunes it exclude those that could not have occurred.
Anteater the presents these dependencies by highlighting their corre-
sponding blocks in the GCT. This allows analysts to quickly get an idea
of which entities may contribute to that specific instance.

Reconfigure Anteater supports reconfiguration by allowing ana-
lysts to add multiple variables to a plot. This allows them to inspect
relationships between pairs of collected values and observe any cor-
relations that may occur. When someone selects multiple variables
to plot, Anteater first determines their compatibility by attempting to
align all or a subset of their instances via a common ancestor (e.g. a
function call or loop). If the variables are compatible, Anteater plots
them against each other in either a scatterplot or parallel coordinates
(depending on the number of variables), allowing analysts to observe
their relationship.

Encode Depending on the type of data presented, Anteater allows
people to encode the data in a multiple ways. Using provided controls,
people can quickly switch between the different plot types available for
that datatype. Additionally, Anteater gives them controls to rearrange
the axes of the plots as well as change the scales.

Filter Anteater supports three types of filter interactions on the plot
and the generalized context tree to help people filter out unimportant
information and emphasize important parts of the execution. The first
type of filtering was mentioned above where clicking on deeper nodes
in the context tree filters the value plots. Through this interaction,
people can filter down the plot to interesting subsets of the data.

In the scatterplot, analysts can brush over a subset of points, right
click, and select to filter out the values not in their brush. Anteater
then removes all other points from the plot, effectively zooming in on
selected points, and grays out any block not on the path to a shown point.
Examples of this can be seen in Fig. 6-C. Similarly, in a bar plot or
histogram, analysts can select bars and filter down to the corresponding
values in the same manner.

One last way analysts can filter the visualization is by hiding parts
of the generalized context tree. Right clicking on a block in the tree
will expand the block to take up the entire width of the interface,
increasing the size of all of its children and thus making them easier
to see. However, in doing this, analysts might lose context of where
they are exploring with respect to the execution. To retain this context,
Anteater adds a smaller, grayscale version of the generalized context
tree with a highlighter bar over it. When an analyst zooms in on a block,
the highlighter narrows to indicate its place in the overall context tree. It
also highlights the selected block in yellow, as well as any other blocks
that are highlighted in the generalized context tree (from dependencies
and brushed values). This allows analysts to see highlighted blocks
even if they are outside of the visible portion of the generalized context
tree. In Fig. 5, we zoomed in on the loop at line 166, but we see our
location with respect to the whole GCT in the context bar.

4.3 How to Handle Objects
While Anteater will not directly collect objects, it provides a way
for analysts to collect the information that interests them from the



(A) Overview of the num_intersections 
variable in all GD Methods

(D) GD Method: Nesterov

(C) GD Method: Momentum

(B) GD Method: Vanilla

Fig. 7. Anteater views of the num intersections variable over all gradient
descent methods in (A), with closer inspection in three methods: Vanilla,
Momentum, and Nesterov in (B), (C), and (D) respectively.

object. To do this, the analyst locates the place in the program where
they wish to inspect the object. At this point, they choose to create a
custom expression for Anteater to evaluate and record that accesses
the data of interest in the object (e.g. obj.attr_1). Each time the
execution reaches this point, Anteater will evaluate and record result
of the expression. This enables analysts to indirectly gather all of the
information from objects that they wish to inspect without directly
collecting the entire object.

The central challenges of collecting entire objects are the detection
of every object modification and visualizing all information within
an object. The first challenge would require Anteater to detect every
time the object is mutated and record the new object state. Not only
is the detection a difficult task, but the collection of all mutations
of the object will inevitably lead to unmanageably large trace files.
The second challenge requires additional input from the analyst on
how to design the visualization of a given object. Rather than have
analysts create their own visualizations, Anteater has them select the
data they want to visualize from objects ahead of time and creates the
visualizations for them.

5 USAGE SCENARIOS

Here, we present two real-world scenarios, showcasing how Anteater
derives insight into program behavior. These scenarios were developed
on real programs through the author’s debugging efforts using Anteater.

5.1 Gradient Descent
The first usage scenario we present inspects a script performing gradient
descent. This script was collected from a Stack Overflow post [1]. The
programmer struggled to determine why the resulting values of the
variables “x” and “x1” were NaNs. In this scenario, we walk through
how to use Anteater to understand the behavior and correct it.

First, we run the script with Anteater to track one of the misbehaving
variables, “x.” Fig. 6-A shows the resulting GCT and histogram. The
histogram shows that much of the descent generates NaNs (the green
bar). As a natural next step, we look at these values over time. We
switch to a scatterplot which shows a plot of the variable “x” over time,
shown in Fig. 6-B. Now, we clearly see that the value of “x” stays
around zero, before becoming a very small negative, then going to
infinity after which it reaches the NaNs. However, something strange
happens where the value stays around zero and then suddenly becomes
a very small negative. To investigate this, we filter the values to show
only those points staying close to zero. We also switch to a symmetric
log scale because we suspect that the values may not actually lie that
close to zero. Fig. 6-C shows the resulting visualizations. We see that

(A) Overview of the min_angle 
variable in all GD Methods

(D) GD Method: Nesterov

(C) GD Method: Momentum

(B) GD Method: Vanilla

Fig. 8. Anteater views of the minimum crossing angle variable over all
gradient descent methods in (A), with closer inspection in three methods:
Vanilla, Momentum, and Nesterov, in (B), (C), and (D) respectively.

the value oscillates between increasingly large positives and negatives
until it reaches infinity.

Now that we know the problem, we try to fix it. The oscillating
values suggest that the gradient is exploding due to a training rate that
is too large. In Fig. 6-D, after lowering the training rate and re-running
the trace, the value quickly converges, as expected. Using Anteater,
we quickly and easily track the variable “x” and observe its behavior
throughout the execution. In a traditional debugger, detecting this
behavior requires stepping through many iterations to view the values.
After lowering the training rate, we repeat this process to determine
if that fixed the problem. This involves significantly more interaction
with the debugger than when using Anteater.

5.2 Graph Edge Crossing Angle Maximization
In this case study, we investigate a script that tries to minimize the
number of edge crossings in a graph with while maximizing the size of
the minimum crossing angle. Researchers in this space test out several
gradient-descent methods to determine which one best balances these
two costs. In this case study, we use Anteater to compare all of the
different gradient-descent methods as well as investigate the differences
between multiple runs of the best performing gradient-descent method.

5.2.1 Comparing Gradient Descent Methods
We first inspect how well each of the six gradient-descent methods
balances the number of edges and the minimum crossing angle and
how the optimization progresses towards its final result. We expect
that each method would progressively work towards a better solution,
generally increasing the minimum crossing angle while decreasing the
number of edge crossings. The six methods considered are vanilla, mo-
mentum, Nesterov, Adagrad, Rmsprop, and Adam. Anteater tracks the
number of intersections and minimum crossing angle throughout each
optimization. The resulting visualizations of the number of intersec-
tions and the minimum angle are shown in Figs. 7 and 8, respectively.
From Fig. 7-A we immediately see the last three methods (Adagrad,
Rmsprop, and Adam) do not improve on the number of edge crossings.
Fig. 8-A shows that the minimum angle behaves similarly. Thus, we
immediately rule these three optimizations out because they do not
seem to actually optimize the parameters.

Next, we take a closer look at the other three. First we consider the
vanilla gradient descent, shown in Fig. 7-B and Fig. 8-B. In Fig. 7-B,
the number of intersections initially decreases (as desired) but quickly
starts to increase. It stays high for several iterations before dropping
off at the very end, providing a good result. Similarly, in 8-B, we
see that initially the minimum crossing angle is high (as desired) but



quickly drops and stays low until the very end when it spikes back up.
In general, we see that the optimization balances the the two parameters
as desired, such that a lower number of edges corresponds to a higher
minimum angle and vice versa. However, the vanilla gradient descent
does not get progressively better results throughout the descent although
it still returns a good result in the end.

We next look at Momentum gradient descent, shown in Figs. 7-
C and 8-C. In Fig. 7-C we see a sort of oscillating pattern in the
progression of the number of intersections where every time it reaches
a low value, it starts increasing. Thus, every time it finds a decent
value for the number of intersections, it starts moving back toward
worse ones. In the end, we end up at a fairly mediocre value. The
minimum angle behaves in a complementary way, every time it hits
a high minimum angle, it starts decreasing. Again, we see that the
optimization balances the two parameters as desired. However, to get a
good result from this method, we have to hope that it terminates at a
good solution before jumping to a bad one.

Last, we look at Nesterov gradient descent, shown in Fig.s 7-D
and 8-D. In this method we see a pattern similar to Momentum gradient
descent. In Fig.s 7-D, we see a trend where the number of intersections
decreases for a while and then jumps very high and repeats. The
minimum angle follows an inverse pattern where it becomes high and
then drops very low before increasing again. To get a good result from
Nesterov gradient descent, we again have to get lucky and end on a high
point in the angle which corresponds to a lower number of intersections.

In the end, we chose Vanilla gradient descent because, while it did
explore bad solutions initially, eventually it found a region of good
solutions. Once in this region, the solution got progressively better and
in the end vanilla gradient descent returned a good solution.

Using Anteater, we quickly and easily see the progression of each
gradient descent method and how each optimization balances the two
parameters, without any manual instrumentation or serial inspection of
values. Without such a system, the burden of recording and creating a
mental image of relevant values falls on the shoulders of the analyst.
Additionally, serially inspecting recorded values makes it more difficult
to observe these patterns. Thus, our method allows people to easily
track and observe value patterns with minimal effort.

5.2.2 Inspecting a Single Gradient Descent
In the previous case, we determined that the vanilla gradient descent
reached the best result, and while initially struggling to make posi-
tive progress, eventually began a progression towards a good result.
However, because of this, we want to inspect a few more executions
of the optimization to determine the consistency and stability of the
optimization. In general, we found that in most cases, Vanilla gradient
descent returns a good solution, however occasionally it would return a
very bad result. Using Anteater, we inspected two contrasting instances,
shown in Fig. 9. Fig. 9-A shows a particularly good instance where
it immediately begins moving toward a good solution and never turns
back. In contrast, Fig. 9-B, shows an instance where the optimization
initially starts moving towards a bad solution, and never recovers. The
instance described in the previous case falls somewhere in between
these two extremes. Therefore we conclude that, while it tends to
produce good results, it is perhaps not the most stable and we should
explore other parameter settings to attempt to improve its stability.

6 DISCUSSION AND FUTURE WORK

Choosing what to track As stated earlier, Anteater only collects
the variables and expressions that the programmer specifies. We ex-
plicitly chose to do this because it reduces the amount of unnecessary
information presented and reduces the size of the trace. However, in
some cases, such as when a programmer does not quite know what
variable contains the bug, people may want suggestions of variables to
inspect or they may want to inspect all variables. One future direction
of work would be to explore methods for automatically suggesting
variables to trace. One such method could be to sample all variables
and present a sampling of the values. Another direction could be to
apply machine learning to execution traces to identify potential areas
of interest to help analysts find a starting point for their exploration.

Fig. 9. Using Anteater to compare two runs of the Vanilla gradient descent
that should maximize the minimum crossing angle while minimizing
edge crossings. In (A) we see that the number of intersections rapidly
decreases while the minimum angle increases. In contrast, in (B) we see
that the number of intersections is increasing throughout the descent
while the minimum angle decreases.

Further Support for Jupyter While the approach presented here
provides greater support for inspecting program values than exists
currently in Jupyter, it still does not quite fully support the Jupyter
workflow. Because our approach uses requires calls to a library it
cannot automatically update and detect when intermediate cells are
re-executed. To support this, we either must require more substantial
annotation or the ability to automatically detect when a cell runs, which
requires under the hood modifications of Jupyter. As we do not want
to bog people down with additional modifications, the latter presents a
more promising opportunity and would allow us to hide the Anteater
logic. In future work, we will explore how to integrate our tracing and
visualization infrastructure directly into Jupyter to better capture and
present the a-linear nature of Jupyter notebook executions.

Scaling Anteater will not scale to scripts that generate excessively
large traces. Such programs typically make many calls or assign to
tracked variables many times. In these programs, the traces become too
large and the visualizations unreadable. Research exists on collecting
the entire trace of large programs [25]; future work is needed to evaluate
how to integrate Anteater with this method. In addition, Anteater works
best with numerical data and has limited support for other datatypes.
While it can present numbers, strings, and booleans, it does not sup-
port compound objects directly. Information about variables of these
datatypes can still be visualized through the use of custom expressions,
but we leave first-class support for more datatypes for future work.

7 CONCLUSION

In this paper, we presented a trace-based visual debugging method,
Anteater and two prototype implementations, as a solution for improv-
ing the understanding and debugging of data science scripts. Through
two usage scenarios, we demonstrated Anteater’s ability to illustrate
important execution behaviors that provide insight into exploratory de-
bugging tasks. Our method serves as a preliminary step towards more
effective debugging methods for data scientists, with several avenues
of future work to further improve analysts workflows.
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